Project description:BackgroundStudy of the causes of the reduced levels of physical activity in patients with COPD has been scarce and limited to biological factors.AimTo assess the relationship between novel socio-environmental factors, namely dog walking, grandparenting, neighbourhood deprivation, residential surrounding greenness and residential proximity to green or blue spaces, and amount and intensity of physical activity in COPD patients.MethodsThis cross-sectional study recruited 410 COPD patients from five Catalan municipalities. Dog walking and grandparenting were assessed by questionnaire. Neighbourhood deprivation was assessed using the census Urban Vulnerability Index, residential surrounding greenness by the satellite-derived Normalized Difference Vegetation Index, and residential proximity to green or blue spaces as living within 300 m of such a space. Physical activity was measured during 1 week by accelerometer to assess time spent on moderate-to-vigorous physical activity (MVPA) and vector magnitude units (VMU) per minute.FindingsPatients were 85% male, had a mean (SD) age of 69 (9) years, and post-bronchodilator FEV1 of 56 (17) %pred. After adjusting for age, sex, socio-economic status, dyspnoea, exercise capacity and anxiety in a linear regression model, both dog walking and grandparenting were significantly associated with an increase both in time in MVPA (18 min/day (p<0.01) and 9 min/day (p<0.05), respectively) and in physical activity intensity (76 VMU/min (p=0.05) and 59 VMUs/min (p<0.05), respectively). Neighbourhood deprivation, surrounding greenness and proximity to green or blue spaces were not associated with physical activity.ConclusionsDog walking and grandparenting are associated with a higher amount and intensity of physical activity in COPD patients.Trial registration numberPre-results, NCT01897298.
Project description:BackgroundA large proportion of COPD patients do not achieve the recommended level of physical activity. It is suggested that feedback on the level of activity by using an activity monitoring device (PAM) increases awareness and may stimulate patients to increase their physical activity in daily life. Our objective was to assess the validity and usability of a simple and low-cost physical activity monitor (Polar A300™) when compared with the validated and established Bodymedia-SenseWear™ (SWA) device.MethodsTo assess the diagnostic equivalent, two different PAM devices were used in parallel in 20 COPD patients GOLD I to IV during 3 consecutive days of daily life. Both systems were compared in terms of steps, calories burned, daily activity time and metabolic equivalents using linear regression analysis and Bland-Altman plots. Practical usability was examined by a 16-item-questionnaire.ResultsHigh correlations of both devices were observed with regard to the sensed step count (r = 0.96; p < 0.01) and calories burned (r = 0.74; p < 0.01), and a lower correlation of daily activity (r = 0.25; p < 0.01) was found. Data analysis over 3 days showed that 90% of the steps (95% CI -4223 to 1887), 100% of the calories (95% CI -2798 to 1887), 90% of the daily activity data (95% CI -12.32, 4065) and 95% of the MET (95% CI -3.11 to 2.75) were within the limits of agreement. A favorable usability (system-, information- and interface quality) of the A300™ device was shown (p < 0.01).ConclusionThe A300™ device with easy practical usability was shown not to be inferior for assessment of physical activity time, step count and calorie consumption in COPD patients when compared with the SWA. It is suggested to consider widespread available devices as commonly used for monitoring recreational sporting activities also in patients for assessment of physical activity in daily life.
Project description:Measuring genome-wide changes in transcript abundance in circulating peripheral whole blood cells is a useful way to study disease pathobiology and may help elucidate biomarkers and molecular mechanisms of disease. The sensitivity and interpretability of analyses carried out in this complex tissue, however, are significantly affected by its heterogeneity. It is therefore desirable to quantify this heterogeneity, either to account for it or to better model interactions that may be present between the abundance of certain transcripts, some cell types and some indication. Accurate enumeration of the many component cell types that make up peripheral whole blood can be costly, however, and may further complicate the sample collection process. Many approaches have been developed to infer the composition of a sample from high-dimensional transcriptomic and, more recently, epigenetic data. These approaches rely on the availability of isolated expression profiles for the cell types to be enumerated. These profiles are platform-specific, suitable datasets are rare, and generating them is expensive. No such dataset exists on the Affymetrix Gene ST platform. We present a freely-available, and open-source, multiresponse Gaussian model capable of accurately inferring the composition of peripheral whole blood samples from Affymetrix Gene ST expression profiles. The model was developed on a cohort of patients with chronic obstructive pulmonary disease (COPD) and tested in chronic heart failure patients.
Project description:People with chronic obstructive pulmonary disease lead sedentary lives and could benefit from increasing their physical activity. The purpose of this study was to determine if an exercise-specific self-efficacy enhancing intervention could increase physical activity and functional performance when delivered in the context of 4 months of upper body resistance training with a 12-month follow-up.IN THIS RANDOMIZED CONTROLLED TRIAL, SUBJECTS WERE ASSIGNED TO: exercise-specific self-efficacy enhancing intervention with upper body resistance training (SE-UBR), health education with upper body resistance training (ED-UBR), or health education with gentle chair exercises (ED-Chair). Physical activity was measured with an accelerometer and functional performance was measured with the Functional Performance Inventory. Forty-nine people with moderate to severe chronic obstructive pulmonary disease completed 4 months of training and provided valid accelerometry data, and 34 also provided accelerometry data at 12 months of follow-up. The self-efficacy enhancing intervention emphasized meeting physical activity guidelines and increasing moderate-to-vigorous physical activity.Differences were observed in light physical activity (LPA) after 4 months of training, time by group interaction effect (P=0.045). The SE-UBR group increased time spent in LPA by +20.68±29.30 minutes/day and the other groups decreased time spent in LPA by -22.43±47.88 minutes/day and -25.73±51.76 minutes/day. Changes in LPA were not sustained at 12-month follow-up. There were no significant changes in moderate-to-vigorous physical activity, sedentary time, or functional performance. Subjects spent most of their waking hours sedentary: 72%±9% for SE-UBR, 68%±10% for ED-UBR, and 74%±9% for ED-Chair.The self-efficacy enhancing intervention produced a modest short-term increase in LPA. Further work is needed to increase the magnitude and duration of effect, possibly by targeting LPA.
Project description:BackgroundReduced physical activity (PA) was the strongest predictor of all-cause mortality in patients with chronic obstructive pulmonary disease (COPD). This scoping review aimed to map the evidence on the current landscape of physical activity, barriers and facilitators, and assessment tools across COPD patients.MethodsArksey and O'Malley's scoping review methodology framework guided the conduct of this review. An electronic search was conducted on five English databases (PubMed, Cochrane Library, PsycINFO, CINAHL and Web of Science) and three Chinese databases (CNKI, CQVIP and WAN-FANG) in January 2022. Two authors independently screened the literature, extracted the studies characteristics.ResultsThe initial search yielded 4389 results, of which 1954 were duplicates. Of the remaining 135 articles, 42 studies met the inclusion criteria. Among the reviewed articles, there were 14 (33.3%) cross-sectional study, 9 (21.4%) cohort study, 4 (9.5%) longitudinal study, 3 qualitative study, 12 (28.7%) randomized control trials. The main barriers identified were older age, women, lung function, comorbidities, COPD symptoms (fear of breathlessness and injury, severe fatigue, anxiety and depression), GOLD stage, frequency of exacerbation, oxygen use, lack of motivation and environment-related (e.g., season and weather). Twelve studies have evaluated the effects of physical exercise (e.g., walking training, pulmonary rehabilitation (PR), pedometer, self-efficacy enhancing intervention and behavioral modification intervention) on PA and showed significant positive effects on the prognosis of patients. However, in real life it is difficult to maintain PA in people with COPD.ConclusionsChanging PA behavior in patients with COPD requires multidisciplinary collaboration. Future studies need to identify the best instruments to measure physical activity in clinical practice. Future studies should focus on the effects of different types, time and intensity of PA in people with COPD and conduct randomized, adequately-powered, controlled trials to evaluate the long-term effectiveness of behavioral change interventions in PA.