Unknown

Dataset Information

0

Enhancing the therapeutic effects of in vitro targeted radionuclide therapy of 3D multicellular tumor spheroids using the novel stapled MDM2/X-p53 antagonist PM2.


ABSTRACT: BACKGROUND:Precision therapeutics continuously make advances in cancer therapy, and a field of growing interest is the combination of targeted radionuclide therapy (TRNT) with potential radiosensitizing agents. This study evaluated whether the effects of in vitro TRNT, using the 177Lu-labeled anti-CD44v6 antibody AbN44v6, were potentiated by the novel stapled MDM2/X-p53 antagonist PM2. MATERIALS AND METHODS:Two wt p53 cell lines, HCT116 (colorectal carcinoma) and UM-SCC-74B (head and neck squamous cell carcinoma), expressing different levels of the target antigen, CD44v6, were used. Antigen-specific binding of 177Lu-AbN44v6 was initially verified in a 2D cell assay, after which the potential effects of unlabeled AbN44v6 on downstream phosphorylation of Erk1/2 were evaluated by western blotting. Further, the therapeutic effects of unlabeled AbN44v6, 177Lu-AbN44v6, PM2, or a combination (labeled/unlabeled AbN44v6 +/- PM2) were assessed in 3D multicellular tumor spheroid assays. RESULTS:Radiolabeled antibody bound specifically to CD44v6 on both cell lines. Unlabeled AbN44v6 binding did not induce downstream phosphorylation of Erk1/2 at any of the concentrations tested, and repeated treatments with the unlabeled antibody did not result in any spheroid growth inhibition. 177Lu-AbN44v6 impaired spheroid growth in a dose-dependent and antigen-dependent manner. A single modality treatment with 20??M of PM2 significantly impaired spheroid growth in both spheroid models. Furthermore, the combination of TRNT and PM2-based therapy proved significantly more potent than either monotherapy. In HCT116 spheroids, this resulted in a two- and threefold spheroid growth rate decrease for the combination of PM2 and 100?kBq 177Lu-AbN44v6 compared to monotherapies 14-day post treatment. In UM-SCC-74B spheroids, the combination therapy resulted in a reduction in spheroid size compared to the initial spheroid size 10-day post treatment. CONCLUSION:TRNT using 177Lu-AbN44v6 proved efficient in stalling spheroid growth in a dose-dependent and antigen-dependent manner, and PM2 treatment demonstrated a growth inhibitory effect as a monotherapy. Moreover, by combining TRNT with PM2-based therapy, therapeutic effects of TRNT were potentiated in a 3D multicellular tumor spheroid model. This proof-of-concept study exemplifies the strength and possibility of combining TRNT targeting CD44v6 with PM2-based therapy.

SUBMITTER: Mortensen ACL 

PROVIDER: S-EPMC7163001 | biostudies-literature | 2020 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Enhancing the therapeutic effects of in vitro targeted radionuclide therapy of 3D multicellular tumor spheroids using the novel stapled MDM2/X-p53 antagonist PM2.

Mortensen Anja C L ACL   Morin Eric E   Brown Christopher J CJ   Lane David P DP   Nestor Marika M  

EJNMMI research 20200416 1


<h4>Background</h4>Precision therapeutics continuously make advances in cancer therapy, and a field of growing interest is the combination of targeted radionuclide therapy (TRNT) with potential radiosensitizing agents. This study evaluated whether the effects of in vitro TRNT, using the <sup>177</sup>Lu-labeled anti-CD44v6 antibody AbN44v6, were potentiated by the novel stapled MDM2/X-p53 antagonist PM2.<h4>Materials and methods</h4>Two wt p53 cell lines, HCT116 (colorectal carcinoma) and UM-SCC  ...[more]

Similar Datasets

| S-EPMC6764291 | biostudies-literature
| S-EPMC5878090 | biostudies-literature
| S-EPMC4130638 | biostudies-literature
| S-EPMC6977200 | biostudies-literature
| S-EPMC8596109 | biostudies-literature
| S-EPMC4961479 | biostudies-literature
| S-EPMC4834071 | biostudies-literature
| S-EPMC3530471 | biostudies-literature
| S-EPMC3569039 | biostudies-literature
| S-EPMC8757790 | biostudies-literature