RBFOX1 Regulates the Permeability of the Blood-Tumor Barrier via the LINC00673/MAFF Pathway.
Ontology highlight
ABSTRACT: The blood-tumor barrier limits the delivery of therapeutic drugs to brain tumor tissues. Selectively opening the blood-tumor barrier is considered crucial for effective chemotherapy of glioma. RNA-binding proteins have emerged as crucial regulators in various biologic processes. This study found that RNA-binding Fox-1 homolog 1 (RBFOX1) was downregulated in glioma vascular endothelial cells derived from glioma tissues, and in glioma endothelial cells obtained by co-culturing endothelial cells with glioma cells. Overexpression of RBFOX1 impaired the integrity of the blood-tumor barrier and increased its permeability. Additionally, RBFOX1 overexpression decreased the expression of tight junction proteins ZO-1, occludin, and claudin-5. Subsequent analysis of the mechanism indicated that the overexpression of RBFOX1 increased musculoaponeurotic fibrosarcoma protein basic leucine zipper [bZIP] transcription factor F (MAFF) expression by downregulating LINC00673, which stabilized MAFF messenger RNA (mRNA) through Staufen1-mediated mRNA decay. Moreover, MAFF could bind to the promoter region and inhibit the promoter activities of ZO-1, occludin, and claudin-5, which reduced its expression. The combination of RBFOX1 upregulation and LINC00673 downregulation promoted doxorubicin delivery across the blood-tumor barrier, resulting in apoptosis of glioma cells. In conclusion, this study indicated that overexpression of RBFOX1 increased blood-tumor barrier permeability through the LINC00673/MAFF pathway, which might provide a new useful target for future enhancement of blood-tumor barrier permeability.
SUBMITTER: Shen S
PROVIDER: S-EPMC7163051 | biostudies-literature | 2020 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA