Unknown

Dataset Information

0

CD4+ T cell expression of the IL-10 receptor is necessary for facial motoneuron survival after axotomy.


ABSTRACT: BACKGROUND:After peripheral nerve transection, facial motoneuron (FMN) survival depends on an intact CD4+ T cell population and a central source of interleukin-10 (IL-10). However, it has not been determined previously whether CD4+ T cells participate in the central neuroprotective IL-10 cascade after facial nerve axotomy (FNA). METHODS:Immunohistochemical labeling of CD4+ T cells, pontine vasculature, and central microglia was used to determine whether CD4+ T cells cross the blood-brain barrier and enter the facial motor nucleus (FMNuc) after FNA. The importance of IL-10 signaling in CD4+ T cells was assessed by performing adoptive transfer of IL-10 receptor beta (IL-10RB)-deficient CD4+ T cells into immunodeficient mice prior to injury. Histology and qPCR were utilized to determine the impact of IL-10RB-deficient T cells on FMN survival and central gene expression after FNA. Flow cytometry was used to determine whether IL-10 signaling in T cells was necessary for their differentiation into neuroprotective subsets. RESULTS:CD4+ T cells were capable of crossing the blood-brain barrier and associating with reactive microglial nodules in the axotomized FMNuc. Full induction of central IL-10R gene expression after FNA was dependent on CD4+ T cells, regardless of their own IL-10R signaling capability. Surprisingly, CD4+ T cells lacking IL-10RB were incapable of mediating neuroprotection after axotomy and promoted increased central expression of genes associated with microglial activation, antigen presentation, T cell co-stimulation, and complement deposition. There was reduced differentiation of IL-10RB-deficient CD4+ T cells into regulatory CD4+ T cells in vitro. CONCLUSIONS:These findings support the interdependence of IL-10- and CD4+ T cell-mediated mechanisms of neuroprotection after axotomy. CD4+ T cells may potentiate central responsiveness to IL-10, while IL-10 signaling within CD4+ T cells is necessary for their ability to rescue axotomized motoneuron survival. We propose that loss of IL-10 signaling in CD4+ T cells promotes non-neuroprotective autoimmunity after FNA.

SUBMITTER: Runge EM 

PROVIDER: S-EPMC7164177 | biostudies-literature | 2020 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

CD4+ T cell expression of the IL-10 receptor is necessary for facial motoneuron survival after axotomy.

Runge Elizabeth M EM   Iyer Abhirami K AK   Setter Deborah O DO   Kennedy Felicia M FM   Sanders Virginia M VM   Jones Kathryn J KJ  

Journal of neuroinflammation 20200417 1


<h4>Background</h4>After peripheral nerve transection, facial motoneuron (FMN) survival depends on an intact CD4+ T cell population and a central source of interleukin-10 (IL-10). However, it has not been determined previously whether CD4+ T cells participate in the central neuroprotective IL-10 cascade after facial nerve axotomy (FNA).<h4>Methods</h4>Immunohistochemical labeling of CD4+ T cells, pontine vasculature, and central microglia was used to determine whether CD4+ T cells cross the bloo  ...[more]

Similar Datasets

| S-EPMC2825370 | biostudies-literature
| S-EPMC2922448 | biostudies-literature
| S-EPMC9564302 | biostudies-literature
| S-EPMC3918582 | biostudies-literature
| S-EPMC9996371 | biostudies-literature
| S-EPMC10431098 | biostudies-literature
| S-EPMC4405077 | biostudies-literature
| S-EPMC6729937 | biostudies-literature
| S-EPMC5741485 | biostudies-literature
| S-EPMC4200111 | biostudies-literature