Project description:Several recent studies demonstrated that lung ultrasound could achieve desired diagnostic accuracy for transient tachypnea of the neonate (TTN). However, the diagnostic performance of lung ultrasound for TTN has not been systematically studied to date. This meta-analysis aimed to investigate the performance of lung ultrasound in diagnosing TTN. The relevant literature was searched in PubMed, Medline, the Cochrane Library, and Embase databases without any restriction in terms of language and time until January 31, 2021. Studies that assessed the diagnostic performance of lung ultrasound for TTN were included. Seven studies with 1514 participants were summarized. The lung ultrasound provided more accurate performance for diagnosing TTN with pooled sensitivity and specificity of 0.67 [95% confidence interval (CI) = 0.63-0.71] and 0.97 (95% CI = 0.95-0.98), respectively. A higher summarized area under the summary receiver operating characteristic curve was observed as 0.9906. Lower sensitivity and area under the curve (AUC) of B-lines for TTN were observed as 0.330 (95% CI = 0.27-0.38) and 0.5000, respectively. Lung ultrasound provided highly accurate AUC, sensitivity, and specificity in detecting TTN. Large-scale studies are warranted in the future to confirm these results.
Project description:Non-invasive respiratory support is increasingly used in lieu of intubated ventilator support for the management of neonatal respiratory failure, particularly in very low birth weight infants at risk for bronchopulmonary dysplasia. The optimal approach and mode for non-invasive support remains uncertain. This article reviews the application of high-frequency ventilation for non-invasive respiratory support in neonates, including basic science studies on mechanics of gas exchange, animal model investigations, and a review of current clinical use in human neonates.
Project description:Non-invasive respiratory support (NIRS) has increasingly been used in the management of COVID-19-associated acute respiratory failure, but questions remain about the utility, safety, and outcome benefit of NIRS strategies. We identified two randomised controlled trials and 83 observational studies, compromising 13 931 patients, that examined the effects of NIRS modalities-high-flow nasal oxygen, continuous positive airway pressure, and bilevel positive airway pressure-on patients with COVID-19. Of 5120 patients who were candidates for full treatment escalation, 1880 (37%) progressed to invasive mechanical ventilation and 3658 of 4669 (78%) survived to study end. Survival was 30% among the 1050 patients for whom NIRS was the stated ceiling of treatment. The two randomised controlled trials indicate superiority of non-invasive ventilation over high-flow nasal oxygen in reducing the need for intubation. Reported complication rates were low. Overall, the studies indicate that NIRS in patients with COVID-19 is safe, improves resource utilisation, and might be associated with better outcomes. To guide clinical decision making, prospective, randomised studies are needed to address timing of intervention, optimal use of NIRS modalities-alone or in combination-and validation of tools such as oxygenation indices, response to a trial of NIRS, and inflammatory markers as predictors of treatment success.
Project description:Respiratory insufficiency and pulmonary health are important considerations in equine neonatal care. As the majority of foals are bred for athletic pursuits, strategies for respiratory support of compromised foals are of particular importance. The administration of supplementary oxygen is readily implemented in equine practice settings, but does not address respiratory insufficiency due to inadequate ventilation and is no longer considered optimal care for hypoxia in critical care settings. Non-invasive ventilatory strategies including continuous or bi-level positive airway pressure are effective in human and veterinary studies, and may offer improved respiratory support in equine clinical practice. The current study was conducted to investigate the use of a commercial bi-level positive airway pressure (BiPAP) ventilator, designed for home care of people with obstructive respiratory conditions, for respiratory support of healthy foals with pharmacologically induced respiratory insufficiency. A two sequence (administration of supplementary oxygen with, or without, BiPAP), two phase, cross-over experimental design was used in a prospective study with six foals. Gas exchange and mechanics of breathing (increased tidal volume, decreased respiratory rate and increased peak inspiratory flow) were improved during BiPAP relative to administration of supplementary oxygen alone or prior studies using continuous positive airway pressure, but modest hypercapnia was observed. Clinical observations, pulse oximetry and monitoring of expired carbon dioxide was of limited benefit in identification of foals responding inappropriately to BiPAP, and improved methods to assess and monitor respiratory function are required in foals.
Project description:The rapid worldwide spread of the Coronavirus disease (COVID-19) crisis has put health systems under pressure to a level never experienced before, putting intensive care units in a position to fail to meet an exponentially growing demand. The main clinical feature of the disease is a progressive arterial hypoxemia which rapidly leads to ARDS which makes the use of intensive care and mechanical ventilation almost inevitable. The difficulty of health systems to guarantee a corresponding supply of resources in intensive care, together with the uncertain results reported in the literature with respect to patients who undergo early conventional ventilation, make the search for alternative methods of oxygenation and ventilation and potentially preventive of the need for tracheal intubation, such as non-invasive respiratory support techniques particularly valuable. In this context, the Emergency Department, located between the area outside the hospital and hospital ward and ICU, assumes the role of a crucial junction, due to the possibility of applying these techniques at a sufficiently early stage and being able to rapidly evaluate their effectiveness. This position paper describes the indications for the use of non-invasive respiratory support techniques in respiratory failure secondary to COVID-19-related pneumonia, formulated by the Non-invasive Ventilation Faculty of the Italian Society of Emergency Medicine (SIMEU) on the base of what is available in the literature and on the authors' direct experience. Rationale, literature, tips & tricks, resources, risks and expected results, and patient interaction will be discussed for each one of the escalating non-invasive respiratory techniques: standard oxygen, HFNCO, CPAP, NIPPV, and awake self-repositioning. The final chapter describes our suggested approach to the failing patient.
Project description:ObjectiveTo assess the role of nasal continuous positive airway pressure (CPAP) initiated at birth for prevention of death and bronchopulmonary dysplasia in very preterm infants.DesignSystematic review.Data sourcesPubMed, Embase, the Cochrane Central Register of Controlled Trials, and online Pediatric Academic Society abstracts from the year of inception to June 2013.Eligibility criteria for selecting studiesRandomised controlled trials evaluating the effect of nasal CPAP compared with intubation in preterm infants born at less than 32 weeks' gestation and presenting the outcomes of either death or bronchopulmonary dysplasia, or both (defined as the need for oxygen support or mechanical ventilation at 36 weeks corrected gestation), during hospital stay.ResultsFour randomised controlled trials (2782 participants) met the inclusion criteria, with 1296 infants in the nasal CPAP group and 1486 in the intubation group. All the trials reported bronchopulmonary dysplasia independently at 36 weeks corrected gestation, with borderline significance in favour of the nasal CPAP group (relative risk 0.84, 95% confidence interval 0.68 to 1.04, risk difference -0.02, 95% confidence interval -0.04 to 0.01). [corrected] No difference in death was observed (relative risk 0.88, 0.68 to 1.14, risk difference -0.02, -0.04 to 0.01, respectively). Pooled analysis showed a significant benefit for the combined outcome of death or bronchopulmonary dysplasia, or both, at 36 weeks corrected gestation for babies treated with nasal CPAP (relative risk 0.90 (95% confidence interval 0.83 to 0.98, risk difference -0.04 (95% confidence interval -0.08 to -0.00), NNT [corrected] of 25).ConclusionOne additional infant could survive to 36 weeks without bronchopulmonary dysplasia for every 25 babies treated with nasal CPAP in the delivery room rather than being intubated.
Project description:While the incidence of thrombotic complications in critically ill patients is very high, in patients under non-invasive respiratory support (NIS) is still unknown. The specific incidence of thrombotic events in each of the clinical scenarios within the broad spectrum of severity of COVID-19, is not clearly established, and this has not allowed the implementation of thromboprophylaxis or anticoagulation for routine care in COVID-19. Patients admitted in a semi-critical unit treated initially with NIS, especially Continuous-Positive Airway Pressure (CPAP), were included in the study. The cumulative incidence of pulmonary embolism was analyzed and compared between patients with good response to NIS and patients with clinical deterioration that required orotracheal intubation. 93 patients were included and 16% required mechanical ventilation (MV) after the NIS. The crude cumulative incidence of the PE was 14% (95%, CI 8-22) for all group. In patients that required orotracheal intubation and MV, the cumulative incidence was significantly higher [33% (95%, CI 16-58)] compared to patients that continued with non-invasive support [11% (CI 5-18)] (Log-Rank, p = 0.013). Patients that required mechanical ventilation were at higher risk of PE for a HR of 4.3 (95%CI 1.2-16). In conclusion, cumulative incidence of PE is remarkably higher in critically patients with a potential impact in COVID-19 evolution. In this context, patients under NIS are a very high-risk group for developing PE without a clear strategy regarding thromboprophylaxis.
Project description:Respirable aerosols (< 5 µm in diameter) present a high risk of SARS-CoV-2 transmission. Guidelines recommend using aerosol precautions during aerosol-generating procedures, and droplet (> 5 µm) precautions at other times. However, emerging evidence indicates respiratory activities may be a more important source of aerosols than clinical procedures such as tracheal intubation. We aimed to measure the size, total number and volume of all human aerosols exhaled during respiratory activities and therapies. We used a novel chamber with an optical particle counter sampling at 100 l.min-1 to count and size-fractionate close to all exhaled particles (0.5-25 µm). We compared emissions from ten healthy subjects during six respiratory activities (quiet breathing; talking; shouting; forced expiratory manoeuvres; exercise; and coughing) with three respiratory therapies (high-flow nasal oxygen and single or dual circuit non-invasive positive pressure ventilation). Activities were repeated while wearing facemasks. When compared with quiet breathing, exertional respiratory activities increased particle counts 34.6-fold during talking and 370.8-fold during coughing (p < 0.001). High-flow nasal oxygen 60 at l.min-1 increased particle counts 2.3-fold (p = 0.031) during quiet breathing. Single and dual circuit non-invasive respiratory therapy at 25/10 cm.H2 O with quiet breathing increased counts by 2.6-fold and 7.8-fold, respectively (both p < 0.001). During exertional activities, respiratory therapies and facemasks reduced emissions compared with activities alone. Respiratory activities (including exertional breathing and coughing) which mimic respiratory patterns during illness generate substantially more aerosols than non-invasive respiratory therapies, which conversely can reduce total emissions. We argue the risk of aerosol exposure is underappreciated and warrants widespread, targeted interventions.