Power calculation for cross-sectional stepped wedge cluster randomized trials with variable cluster sizes.
Ontology highlight
ABSTRACT: Standard sample size calculation formulas for stepped wedge cluster randomized trials (SW-CRTs) assume that cluster sizes are equal. When cluster sizes vary substantially, ignoring this variation may lead to an under-powered study. We investigate the relative efficiency of a SW-CRT with varying cluster sizes to equal cluster sizes, and derive variance estimators for the intervention effect that account for this variation under a mixed effects model-a commonly used approach for analyzing data from cluster randomized trials. When cluster sizes vary, the power of a SW-CRT depends on the order in which clusters receive the intervention, which is determined through randomization. We first derive a variance formula that corresponds to any particular realization of the randomized sequence and propose efficient algorithms to identify upper and lower bounds of the power. We then obtain an "expected" power based on a first-order approximation to the variance formula, where the expectation is taken with respect to all possible randomization sequences. Finally, we provide a variance formula for more general settings where only the cluster size arithmetic mean and coefficient of variation, instead of exact cluster sizes, are known in the design stage. We evaluate our methods through simulations and illustrate that the average power of a SW-CRT decreases as the variation in cluster sizes increases, and the impact is largest when the number of clusters is small.
SUBMITTER: Harrison LJ
PROVIDER: S-EPMC7165039 | biostudies-literature | 2020 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA