Unknown

Dataset Information

0

A Sox2:miR-486-5p Axis Regulates Survival of GBM Cells by Inhibiting Tumor Suppressor Networks.


ABSTRACT: Glioblastoma multiforme (GBM) and other solid malignancies are heterogeneous and contain subpopulations of tumor cells that exhibit stem-like features. Our recent findings point to a dedifferentiation mechanism by which reprogramming transcription factors Oct4 and Sox2 drive the stem-like phenotype in glioblastoma, in part, by differentially regulating subsets of miRNAs. Currently, the molecular mechanisms by which reprogramming transcription factors and miRNAs coordinate cancer stem cell tumor-propagating capacity are unclear. In this study, we identified miR-486-5p as a Sox2-induced miRNA that targets the tumor suppressor genes PTEN and FoxO1 and regulates the GBM stem-like cells. miR-486-5p associated with the GBM stem cell phenotype and Sox2 expression and was directly induced by Sox2 in glioma cell lines and patient-derived neurospheres. Forced expression of miR-486-5p enhanced the self-renewal capacity of GBM neurospheres, and inhibition of endogenous miR-486-5p activated PTEN and FoxO1 and induced cell death by upregulating proapoptotic protein BIM via a PTEN-dependent mechanism. Furthermore, delivery of miR-486-5p antagomirs to preestablished orthotopic GBM neurosphere-derived xenografts using advanced nanoparticle formulations reduced tumor sizes in vivo and enhanced the cytotoxic response to ionizing radiation. These results define a previously unrecognized and therapeutically targetable Sox2:miR-486-5p axis that enhances the survival of GBM stem cells by repressing tumor suppressor pathways. SIGNIFICANCE: This study identifies a novel axis that links core transcriptional drivers of cancer cell stemness to miR-486-5p-dependent modulation of tumor suppressor genes that feeds back to regulate glioma stem cell survival.

SUBMITTER: Lopez-Bertoni H 

PROVIDER: S-EPMC7165043 | biostudies-literature | 2020 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications


Glioblastoma multiforme (GBM) and other solid malignancies are heterogeneous and contain subpopulations of tumor cells that exhibit stem-like features. Our recent findings point to a dedifferentiation mechanism by which reprogramming transcription factors Oct4 and Sox2 drive the stem-like phenotype in glioblastoma, in part, by differentially regulating subsets of miRNAs. Currently, the molecular mechanisms by which reprogramming transcription factors and miRNAs coordinate cancer stem cell tumor-  ...[more]

Similar Datasets

| S-EPMC5581084 | biostudies-other
| S-EPMC8805984 | biostudies-literature
| S-EPMC5085134 | biostudies-literature
| S-EPMC5641172 | biostudies-literature
| S-EPMC7167278 | biostudies-literature
| S-EPMC7197141 | biostudies-literature
| S-EPMC9831719 | biostudies-literature
| S-EPMC6151872 | biostudies-literature
| S-EPMC9185083 | biostudies-literature
| S-EPMC6172144 | biostudies-literature