Project description:Name of the disease (synonyms) See Table 1, Column 1-"Name of disease" and Column 2-"Alternative names". OMIM# of the disease See Table 1, Column 3-"OMIM# of the disease". Name of the analysed genes or DNA/chromosome segments and OMIM# of the gene(s) Core genes (irrespective of being tested by Sanger sequencing or next-generation sequencing): See Table 1, Column 4-"Cytogenetic location", Column 5-"Associated gene(s)" and Column 6-"OMIM# of associated gene(s)". Additional genes (if tested by next-generation sequencing, including Whole exome/genome sequencing and panel sequencing): See Table 2, Column 1-"Gene", Column 2-"Alternative names", Column 3-"OMIM# of gene" and Column 4-"Cytogenetic location". Review of the analytical and clinical validity as well as of the clinical utility of DNA-based testing for mutations in the gene(s) in diagnostic, predictive and prenatal settings, and for risk assessment in relatives.
Project description:1. NAME OF THE DISEASE (SYNONYMS): Primary congenital glaucoma (PCG). Glaucoma, congenital (GLC). 2. OMIM# OF THE DISEASE: 231300- GLC3A. 600975- GLC3B. 613085- GLC3C. 613086- GLC3D. 617272- GLC3E. 3. NAME OF THE ANALYSED GENES OR DNA/CHROMOSOME SEGMENTS: CYP1B1. LTBP2. MYOC. FOXC1. TEK. 4. OMIM# OF THE GENE(S): CYP1B1 MIM# 601771. LTBP2 MIM# 602091. MYOC MIM# 601652. FOXC1 MIM# 601090. TEK MIM# 600221. Review of the analytical and clinical validity, as well as of the clinical utility of DNA-based testing for variants in the CYP1B1, LTBP2 and MYOC gene(s) in ⊠ diagnostic, ⊠ predictive and ⊠ prenatal settings and for ⊠ risk assessment in relatives.
Project description:NGPS is a method for de-novo, full-length protein sequencing in high throughput. The method is based on cleavage of the protein at semi-random sites by microwave-assisted acid hydrolysis (MAAH), enrichment of LC-MS/MS amenable peptides from the hydrolysate by solid-phase-extraction, LC-MS/MS analysis, de-novo long peptide tag sequencing of resulting peptides and assembly of peptide tags into consensus contigs.
Project description:BackgroundAnophthalmia/microphthalmia (A/M) is caused by mutations in several different transcription factors, but mutations in each causative gene are relatively rare, emphasizing the need for a testing approach that screens multiple genes simultaneously. We used next-generation sequencing to screen 15 A/M patients for mutations in 9 pathogenic genes to evaluate this technology for screening in A/M.MethodsWe used a pooled sequencing design, together with custom single nucleotide polymorphism (SNP) calling software. We verified predicted sequence alterations using Sanger sequencing.ResultsWe verified three mutations - c.542delC in SOX2, resulting in p.Pro181Argfs*22, p.Glu105X in OTX2 and p.Cys240X in FOXE3. We found several novel sequence alterations and SNPs that were likely to be non-pathogenic - p.Glu42Lys in CRYBA4, p.Val201Met in FOXE3 and p.Asp291Asn in VSX2. Our analysis methodology gave one false positive result comprising a mutation in PAX6 (c.1268A > T, predicting p.X423LeuextX*15) that was not verified by Sanger sequencing. We also failed to detect one 20 base pair (bp) deletion and one 3 bp duplication in SOX2.ConclusionsOur results demonstrated the power of next-generation sequencing with pooled sample groups for the rapid screening of candidate genes for A/M as we were correctly able to identify disease-causing mutations. However, next-generation sequencing was less useful for small, intragenic deletions and duplications. We did not find mutations in 10/15 patients and conclude that there is a need for further gene discovery in A/M.
Project description:The mutation spectrum of deafness genes may vary in different ethnical groups. In this study, we investigated the genetic etiology of nonsyndromic deafness in four consanguineous and two multiplex Uyghur families in which mutations in common deafness genes GJB2, SLC26A4 and MT-RNR1 were excluded. Targeted next-generation sequencing of 97 deafness genes was performed in the probands of each family. Novel pathogenic mutations were identified in four probands including the p.L416R/p.A438T compound heterozygous mutations in TMC1, the homozygous p.V1880E mutation in MYO7A, c.1238delT frameshifting deletion in PCDH15 and c.9690+1G>A splice site mutation in MYO15A. Co-segregation of the mutations and the deafness were confirmed within each family by Sanger sequencing. No pathogenic mutations were identified in one multiplex family and one consanguineous family. Our study provided a useful piece of information for the genetic etiology of deafness in Uyghurs.
Project description:Patent ductus arteriosus (PDA) is a common congenital cardiovascular malformation with both inherited and acquired causes. Several genes have been reported to be related to PDA, but the molecular pathogenesis is still unclear. Here, we screened a population matched cohort of 39 patients with PDA and 100 healthy children using whole exome sequencing (WES). And identified 10 copy number variants (CNVs) and 20 candidate genes using Gene ontology (GO) functional enrichment analysis. In gene network analysis, we screened 7 pathogenic CNVs of 10 candidate genes (MAP3K1, MYC, VAV2, WDR5, RXRA, APLNR, TJP1, ERCC2, FOSB, CHRNA4). Further analysis of transcriptome array showed that 7 candidate genes (MAP3K1, MYC, VAV2, APLNR, TJP1, FOSB, CHRNA4) were indeed significantly expressed in human embryonic heart. Moreover, CHRNA4 was observed the most important genes. Our data provided rare CNVs as potential genetic cause of PDA in humans and also advance understanding of the genetic components of PDA.
Project description:BACKGROUND: DNA copy number variations occur within populations and aberrations can cause disease. We sought to develop an improved lab-automatable, cost-efficient, accurate platform to profile DNA copy number. RESULTS: We developed a sequencing-based assay of nuclear, mitochondrial, and telomeric DNA copy number that draws on the unbiased nature of next-generation sequencing and incorporates techniques developed for RNA expression profiling. To demonstrate this platform, we assayed UMC-11 cells using 5 million 33 nt reads and found tremendous copy number variation, including regions of single and homogeneous deletions and amplifications to 29 copies; 5 times more mitochondria and 4 times less telomeric sequence than a pool of non-diseased, blood-derived DNA; and that UMC-11 was derived from a male individual. CONCLUSION: The described assay outputs absolute copy number, outputs an error estimate (p-value), and is more accurate than array-based platforms at high copy number. The platform enables profiling of mitochondrial levels and telomeric length. The assay is lab-automatable and has a genomic resolution and cost that are tunable based on the number of sequence reads.