Project description:BACKGROUND:Studies have reported that ambient air pollution is associated with an increased risk of developing or dying from coronavirus-2 (COVID-19). Methodological approaches to investigate the health impacts of air pollution on epidemics should differ from those used for chronic diseases, but the methods used in these studies have not been appraised critically. OBJECTIVES:Our study aimed to identify and critique the methodological approaches of studies of air pollution on infections and mortality due to COVID-19 and to identify and critique the methodological approaches of similar studies concerning severe acute respiratory syndrome (SARS). METHODS:Published and unpublished papers of associations between air pollution and developing or dying from COVID-19 or SARS that were reported as of 10 May 2020 were identified through electronic databases, internet searches, and other sources. RESULTS:All six COVID-19 studies and two of three SARS studies reported positive associations. Two were time series studies that estimated associations between daily changes in air pollution, one was a cohort that assessed associations between air pollution and the secondary spread of SARS, and six were ecological studies that used area-wide exposures and outcomes. Common shortcomings included possible cross-level bias in ecological studies, underreporting of health outcomes, using grouped data, the lack of highly spatially resolved air pollution measures, inadequate control for confounding and evaluation of effect modification, not accounting for regional variations in the timing of outbreaks' temporal changes in at-risk populations, and not accounting for nonindependence of outcomes. DISCUSSION:Studies of air pollution and novel coronaviruses have relied mainly on ecological measures of exposures and outcomes and are susceptible to important sources of bias. Although longitudinal studies with individual-level data may be imperfect, they are needed to adequately address this topic. The complexities involved in these types of studies underscore the need for careful design and for peer review. https://doi.org/10.1289/EHP7411.
Project description:The United Nations' Sustainable Development Goal (SDG) 3.9 calls for a substantial reduction in deaths attributable to PM2.5 pollution (DAPP). However, DAPP projections vary greatly and the likelihood of meeting SDG3.9 depends on complex interactions among environmental, socio-economic, and healthcare parameters. We project potential future trends in global DAPP considering the joint effects of each driver (PM2.5 concentration, death rate of diseases, population size, and age structure) and assess the likelihood of achieving SDG3.9 under the Shared Socioeconomic Pathways (SSPs) as quantified by the Scenario Model Intercomparison Project (ScenarioMIP) framework with simulated PM2.5 concentrations from 11 models. We find that a substantial reduction in DAPP would not be achieved under all but the most optimistic scenario settings. Even the development aligned with the Sustainability scenario (SSP1-2.6), in which DAPP was reduced by 19%, still falls just short of achieving a substantial (≥20%) reduction by 2030. Meeting SDG3.9 calls for additional efforts in air pollution control and healthcare to more aggressively reduce DAPP.
Project description:The large availability of both air pollution and COVID-19 data, and the simplicity to make geographical correlations between them, led to a proliferation of ecological studies relating the levels of pollution in administrative areas to COVID-19 incidence, mortality or lethality rates. However, the major drawback of these studies is the ecological fallacy that can lead to spurious associations. In this frame, an increasing concern has been addressed to clarify the possible role of contextual variables such as municipalities' characteristics (including urban, rural, semi-rural settings), those of the resident communities, the network of social relations, the mobility of people, and the responsiveness of the National Health Service (NHS), to better clarify the dynamics of the phenomenon. The objective of this paper is to identify and collect the municipalities' and community contextual factors and to synthesize their information content to produce suitable indicators in national environmental epidemiological studies, with specific emphasis on assessing the possible role of air pollution on the incidence and severity of the COVID-19 disease. A first step was to synthesize the content of spatial information, available at the municipal level, in a smaller set of "summary indexes" that can be more easily viewed and analyzed. For the 7903 Italian municipalities (1 January 2020-ISTAT), 44 variables were identified, collected, and grouped into five information dimensions a priori defined: (i) geographic characteristics of the municipality, (ii) demographic and anthropogenic characteristics, (iii) mobility, (iv) socio-economic-health area, and (v) healthcare offer (source: ISTAT, EUROSTAT or Ministry of Health, and further ad hoc elaborations (e.g., OpenStreetMaps)). Principal component analysis (PCA) was carried out for the five identified dimensions, with the aim of reducing the large number of initial variables into a smaller number of components, limiting as much as possible the loss of information content (variability). We also included in the analysis PM2.5, PM10 and NO2 population weighted exposure (PWE) values obtained using a four-stage approach based on the machine learning method, "random forest", which uses space-time predictors, satellite data, and air quality monitoring data estimated at the national level. Overall, the PCA made it possible to extract twelve components: three for the territorial characteristics dimension of the municipality (variance explained 72%), two for the demographic and anthropogenic characteristics dimension (variance explained 62%), three for the mobility dimension (variance explained 83%), two for the socio-economic-health sector (variance explained 58%) and two for the health offer dimension (variance explained 72%). All the components of the different dimensions are only marginally correlated with each other, demonstrating their potential ability to grasp different aspects of the spatial distribution of the COVID-19 pathology. This work provides a national repository of contextual variables at the municipality level collapsed into twelve informative factors suitable to be used in studies on the association between chronic exposure to air pollution and COVID-19 pathology, as well as for investigations on the role of air pollution on the health of the Italian population.
Project description:Substantial quantities of air pollution and related health impacts are ultimately attributable to household consumption. However, how consumption pattern affects air pollution impacts remains unclear. Here we show, of the 1.08 (0.74-1.42) million premature deaths due to anthropogenic PM2.5 exposure in China in 2012, 20% are related to household direct emissions through fuel use and 24% are related to household indirect emissions embodied in consumption of goods and services. Income is strongly associated with air pollution-related deaths for urban residents in which health impacts are dominated by indirect emissions. Despite a larger and wealthier urban population, the number of deaths related to rural consumption is higher than that related to urban consumption, largely due to direct emissions from solid fuel combustion in rural China. Our results provide quantitative insight to consumption-based accounting of air pollution and related deaths and may inform more effective and equitable clean air policies in China.
Project description:Over the last decades, energy and pollution control policies combined with structural changes in the economy decoupled emission trends from economic growth, increasingly also in the developing world. It is found that effective implementation of the presently decided national pollution control regulations should allow further economic growth without major deterioration of ambient air quality, but will not be enough to reduce pollution levels in many world regions. A combination of ambitious policies focusing on pollution controls, energy and climate, agricultural production systems and addressing human consumption habits could drastically improve air quality throughout the world. By 2040, mean population exposure to PM2.5 from anthropogenic sources could be reduced by about 75% relative to 2015 and brought well below the WHO guideline in large areas of the world. While the implementation of the proposed technical measures is likely to be technically feasible in the future, the transformative changes of current practices will require strong political will, supported by a full appreciation of the multiple benefits. Improved air quality would avoid a large share of the current 3-9 million cases of premature deaths annually. At the same time, the measures that deliver clean air would also significantly reduce emissions of greenhouse gases and contribute to multiple UN sustainable development goals. This article is part of a discussion meeting issue 'Air quality, past present and future'.
Project description:Background pollution represents the lowest levels of ambient air pollution to which the population is chronically exposed, but few studies have focused on thoroughly characterizing this regime. This study uses clustering statistical techniques as a modelling approach to characterize this pollution regime while deriving reliable information to be used as estimates of exposure in epidemiological studies. The background levels of four key pollutants in five urban areas of Andalusia (Spain) were characterized over an 11-year period (2005-2015) using four widely-known clustering methods. For each pollutant data set, the first (lowest) cluster representative of the background regime was studied using finite mixture models, agglomerative hierarchical clustering, hidden Markov models (hmm) and k-means. Clustering method hmm outperforms the rest of the techniques used, providing important estimates of exposures related to background pollution as its mean, acuteness and time incidence values in the ambient air for all the air pollutants and sites studied.
Project description:Introduction: Many studies have reported the association between air pollution and human health based on regulatory air pollution monitoring data. However, because regulatory monitoring networks were not designed for epidemiological studies, the collected data may not provide sufficient spatial contrasts for assessing such associations. Our goal was to develop a monitoring design supplementary to the regulatory monitoring network in Seoul, Korea. This design focused on the selection of 20 new monitoring sites to represent the variability in PM2.5 across people's residences for cohort studies. Methods: We obtained hourly measurements of PM2.5 at 37 regulatory monitoring sites in 2010 in Seoul, and computed the annual average at each site. We also computed 313 geographic variables representing various pollution sources at the regulatory monitoring sites, 31,097 children's homes from the Atopy Free School survey, and 412 community service centers in Seoul. These three types of locations represented current, subject, and candidate locations. Using the regulatory monitoring data, we performed forward variable selection and chose five variables most related to PM2.5. Then, k-means clustering was applied to categorize all locations into several groups representing a diversity in the spatial variability of the five selected variables. Finally, we computed the proportion of current to subject location in each cluster, and randomly selected new monitoring sites from candidate sites in the cluster with the minimum proportion until 20 sites were selected. Results: The five selected geographic variables were related to traffic or urbanicity with a cross-validated R² value of 0.69. Clustering analysis categorized all locations into nine clusters. Finally, one to eight new monitoring sites were selected from five clusters. Discussion: The proposed monitoring design will help future studies determine the locations of new monitoring sites representing spatial variability across residences for epidemiological analyses.
Project description:PURPOSE OF REVIEW:The aim of this review is to identify the key contextual and methodological differences in health impact assessments (HIA) of ambient air pollution performed for Europe. We limited our review to multi-country reviews. An additional aim is to quantify some of these differences by applying them in a HIA template in three European cities. RECENT FINDINGS:Several HIAs of ambient air pollution have been performed for Europe, and their key results have been largely disseminated. Different studies have, however, come up with substantial differences in attributed health effects. It is of importance to review the background contributing to these differences and to quantify their importance for decision makers who will use them. We identified several methodological differences that could explain the discrepancy behind the number of attributable deaths or years of life lost. The main differences are due to the exposure-response functions chosen, the ways of assessing air pollution levels, the air pollution scenarios and the study population. In the quantification part, we found that using risk estimates from the European Study of Cohorts for Air Pollution Effects (ESCAPE) instead of the American Cancer Society (ACS) study could nearly double the attributable burden of ambient air pollution. This study provides some insights into the differential results in previously published HIAs on air pollution in Europe. These results are important for stakeholders in order to make informed decisions.
Project description:A barrier in the children's environmental health field has been the lack of early-warning systems to identify risks of childhood illness and developmental disorders. We aimed to develop a methodology to identify an accessible biomarker measured in a small amount of blood to distinguish newborns at elevated risk from a toxic prenatal exposure, using air pollutants as a case study. Because air pollutants are associated with altered DNA methylation, we developed a pipeline using DNA methylation signatures measured in umbilical cord blood, which could be used as predictors of prenatal exposure. We used air pollution indicators, including modelled trimester-specific and pregnancy average NO2 and PM2.5, and DNA methylation signatures from Illumina arrays measured in two New York City-based longitudinal birth cohorts from the Columbia Centre for Children's Environmental Health. We developed a screening plus three-part pipeline that incorporates selection, testing, and validation to identify whether DNA methylation can be used to predict exposure to prenatal air pollution indicators, NO2 and PM2.5. Applying this pipeline, we found that cord blood DNA methylation could be used to predict high vs. low average pregnancy NO2 (AUC = 0.60, 95% CI: 0.52-0.68, with validation AUC = 0.60). Similar results were found for high vs. low third trimester NO2. In this proof of concept study using air pollutants as an example, we provide an approach (with a generalizable analytic pipeline) that can be used for prediction of prenatal exposure to contaminants. This approach has potential to identify children at risk of developmental disorders and illness resulting from prenatal exposure.