Project description:Although brain oscillations involving the basal ganglia (BG) have been the target of extensive research, the main focus lies disproportionally on oscillations generated within the BG circuit rather than other sources, such as cortical areas. We remedy this here by investigating the influence of various cortical frequency bands on the intrinsic effective connectivity of the BG, as well as the role of the latter in regulating cortical behaviour. To do this, we construct a detailed neural model of the complete BG circuit based on fine-tuned spiking neurons, with both electrical and chemical synapses as well as short-term plasticity between structures. As a measure of effective connectivity, we estimate information transfer between nuclei by means of transfer entropy. Our model successfully reproduces firing and oscillatory behaviour found in both the healthy and Parkinsonian BG. We found that, indeed, effective connectivity changes dramatically for different cortical frequency bands and phase offsets, which are able to modulate (or even block) information flow in the three major BG pathways. In particular, alpha (8-12Hz) and beta (13-30Hz) oscillations activate the direct BG pathway, and favour the modulation of the indirect and hyper-direct pathways via the subthalamic nucleus-globus pallidus loop. In contrast, gamma (30-90Hz) frequencies block the information flow from the cortex completely through activation of the indirect pathway. Finally, below alpha, all pathways decay gradually and the system gives rise to spontaneous activity generated in the globus pallidus. Our results indicate the existence of a multimodal gating mechanism at the level of the BG that can be entirely controlled by cortical oscillations, and provide evidence for the hypothesis of cortically-entrained but locally-generated subthalamic beta activity. These two findings suggest new insights into the pathophysiology of specific BG disorders.
Project description:Action selection has been hypothesized to be a key function of the basal ganglia, yet the nuclei involved, their interactions and the importance of the direct/indirect pathway segregation in such process remain debated. Here, we design a spiking computational model of the monkey basal ganglia derived from a previously published population model, initially parameterized to reproduce electrophysiological activity at rest and to embody as much quantitative anatomical data as possible. As a particular feature, both models exhibit the strong overlap between the direct and indirect pathways that has been documented in non-human primates. Here, we first show how the translation from a population to an individual neuron model was achieved, with the addition of a minimal number of parameters. We then show that our model performs action selection, even though it was built without any assumption on the activity carried out during behaviour. We investigate the mechanisms of this selection through circuit disruptions and found an instrumental role of the off-centre/on-surround structure of the MSN-STN-GPi circuit, as well as of the MSN-MSN and FSI-MSN projections. This validates their potency in enabling selection. We finally study the pervasive centromedian and parafascicular thalamic inputs that reach all basal ganglia nuclei and whose influence is therefore difficult to anticipate. Our model predicts that these inputs modulate the responsiveness of action selection, making them a candidate for the regulation of the speed-accuracy trade-off during decision-making.
Project description:The basal ganglia are a crucial brain system for behavioral selection, and their function is disturbed in Parkinson's disease (PD), where neurons exhibit inappropriate synchronization and oscillations. We present a spiking neural model of basal ganglia including plausible details on synaptic dynamics, connectivity patterns, neuron behavior, and dopamine effects. Recordings of neuronal activity in the subthalamic nucleus and Type A (TA; arkypallidal) and Type I (TI; prototypical) neurons in globus pallidus externa were used to validate the model. Simulation experiments predict that both local inhibition in striatum and the existence of an indirect pathway are important for basal ganglia to function properly over a large range of cortical drives. The dopamine depletion-induced increase of AMPA efficacy in corticostriatal synapses to medium spiny neurons (MSNs) with dopamine receptor D2 synapses (CTX-MSN D2) and the reduction of MSN lateral connectivity (MSN-MSN) were found to contribute significantly to the enhanced synchrony and oscillations seen in PD. Additionally, reversing the dopamine depletion-induced changes to CTX-MSN D1, CTX-MSN D2, TA-MSN, and MSN-MSN couplings could improve or restore basal ganglia action selection ability. In summary, we found multiple changes of parameters for synaptic efficacy and neural excitability that could improve action selection ability and at the same time reduce oscillations. Identification of such targets could potentially generate ideas for treatments of PD and increase our understanding of the relation between network dynamics and network function.
Project description:Being permanently confronted with an uncertain world, brains have faced evolutionary pressure to represent this uncertainty in order to respond appropriately. Often, this requires visiting multiple interpretations of the available information or multiple solutions to an encountered problem. This gives rise to the so-called mixing problem: since all of these "valid" states represent powerful attractors, but between themselves can be very dissimilar, switching between such states can be difficult. We propose that cortical oscillations can be effectively used to overcome this challenge. By acting as an effective temperature, background spiking activity modulates exploration. Rhythmic changes induced by cortical oscillations can then be interpreted as a form of simulated tempering. We provide a rigorous mathematical discussion of this link and study some of its phenomenological implications in computer simulations. This identifies a new computational role of cortical oscillations and connects them to various phenomena in the brain, such as sampling-based probabilistic inference, memory replay, multisensory cue combination, and place cell flickering.
Project description:Brain-computer interfaces provide an artificial link by which the brain can directly interact with the environment. To achieve fine brain-computer interface control, participants must modulate the patterns of the cortical oscillations generated from the motor and somatosensory cortices. However, it remains unclear how humans regulate cortical oscillations, the controllability of which substantially varies across individuals. Here, we performed simultaneous electroencephalography (to assess brain-computer interface control) and functional magnetic resonance imaging (to measure brain activity) in healthy participants. Self-regulation of cortical oscillations induced activity in the basal ganglia-cortical network and the neurofeedback control network. Successful self-regulation correlated with striatal activity in the basal ganglia-cortical network, through which patterns of cortical oscillations were likely modulated. Moreover, basal ganglia-cortical network and neurofeedback control network connectivity correlated with strong and weak self-regulation, respectively. The findings indicate that the basal ganglia-cortical network is important for self-regulation, the understanding of which should help advance brain-computer interface technology.
Project description:To make an optimal decision we need to weigh all the available options, compare them with the current goal, and choose the most rewarding one. Depending on the situation an optimal decision could be to either "explore" or "exploit" or "not to take any action" for which the Basal Ganglia (BG) is considered to be a key neural substrate. In an attempt to expand this classical picture of BG function, we had earlier hypothesized that the Indirect Pathway (IP) of the BG could be the subcortical substrate for exploration. In this study we build a spiking network model to relate exploration to synchrony levels in the BG (which are a neural marker for tremor in Parkinson's disease). Key BG nuclei such as the Sub Thalamic Nucleus (STN), Globus Pallidus externus (GPe) and Globus Pallidus internus (GPi) were modeled as Izhikevich spiking neurons whereas the Striatal output was modeled as Poisson spikes. The model is cast in reinforcement learning framework with the dopamine signal representing reward prediction error. We apply the model to two decision making tasks: a binary action selection task (similar to one used by Humphries et al., 2006) and an n-armed bandit task (Bourdaud et al., 2008). The model shows that exploration levels could be controlled by STN's lateral connection strength which also influenced the synchrony levels in the STN-GPe circuit. An increase in STN's lateral strength led to a decrease in exploration which can be thought as the possible explanation for reduced exploratory levels in Parkinson's patients. Our simulations also show that on complete removal of IP, the model exhibits only Go and No-Go behaviors, thereby demonstrating the crucial role of IP in exploration. Our model provides a unified account for synchronization, action section, and explorative behavior.
Project description:The cerebellum (CB) and basal ganglia (BG) each have topographically distinct functional subregions that are functionally and anatomically interconnected with cortical regions through discrete thalamic loops and with each other via disynaptic connections, with previous work detailing high levels of functional connectivity between these phylogenetically ancient regions. It was posited that this CB-BG network provides support for cortical systems processing, spanning cognitive, emotional, and motor domains, implying that subcortical network measures are strongly related to cortical network measures (Bostan & Strick, 2018); however, it is currently unknown how network measures within distinct CB-BG networks relate to cortical network measures. Here, 122 regions of interest comprising cognitive and motor CB-BG networks and 7 canonical cortical resting-state were used to investigate whether the integration (quantified using global efficiency, GE) of cognitive CB-BG network (CCBN) nodes and their segregation from motor CB-BG network (MCBN) nodes is related to cortical network GE and segregation in 233 non-related, right-handed participants (Human Connectome Project-1200). CCBN GE positively correlated with GE in the default mode, motor, and auditory networks and MCBN GE positively correlated with GE in all networks, except the default mode and emotional. MCBN segregation was related to motor network segregation. These findings highlight the CB-BG network's potential role in cortical networks associated with executive function, task switching, and verbal working memory. This work has implications for understanding cortical network organization and cortical-subcortical interactions in healthy adults and may help in determining biomarkers and deciphering subcortical differences seen in disease states.
Project description:The insular cortex (INS) is extensively connected to the central nucleus of the amygdala (CEA), and both regions send convergent projections into the caudal lateral hypothalamus (LHA) encompassing the parasubthalamic nucleus (PSTN). However, the organization of the network between these structures has not been clearly delineated in the literature, although there has been an upsurge in functional studies related to these structures, especially with regard to the cognitive and psychopathological control of feeding. We conducted tract-tracing experiments from the INS and observed a pathway to the PSTN region that runs parallel to the canonical hyperdirect pathway from the isocortex to the subthalamic nucleus (STN) adjacent to the PSTN. In addition, an indirect pathway with a relay in the central amygdala was also observed that is similar in its structure to the classic indirect pathway of the basal ganglia that also targets the STN. C-Fos experiments showed that the PSTN complex reacts to neophobia and sickness induced by lipopolysaccharide or cisplatin. Chemogenetic (designer receptors exclusively activated by designer drugs [DREADD]) inhibition of tachykininergic neurons (Tac1) in the PSTN revealed that this nucleus gates a stop "no-eat" signal to refrain from feeding when the animal is subjected to sickness or exposed to a previously unknown source of food. Therefore, our anatomical findings in rats and mice indicate that the INS-PSTN network is organized in a similar manner as the hyperdirect and indirect basal ganglia circuitry. Functionally, the PSTN is involved in gating feeding behavior, which is conceptually homologous to the motor no-go response of the adjacent STN.