Study on Retrofitted Masonry Elements under Shear Using Digital Image Correlation.
Ontology highlight
ABSTRACT: Architectural heritage is usually built with masonry structures, which present problems under lateral in-plane loading conditions, such as wind pressure or earthquakes. In order to improve the shear behavior of masonry, the use of a fabric-reinforced cementitious matrix (FRCM) has become an interesting solution because of its synergy of mechanical properties and compatibility with masonry substrates. For a proper structural evaluation, the mechanical behavior of reinforced masonry and the FRCM itself needs to be characterized. Hence, a numerical model to evaluate the FRCM reinforcement requires some mechanical parameters that may be difficult to obtain. In this sense, the shear behavior of masonry can be evaluated by means of diagonal tension tests on small specimens (71 × 71 cm). In this work, a digital image correlation (DIC) monitoring system was used to control displacements and cracking patterns of masonry specimens under shear stress (induced by diagonal tension with FRCM layers) applied to one or two sides. In addition, the mechanical behavior of FRCM coupons under uniaxial tensile tests was also registered with DIC. The displacement measurements obtained by DIC were validated with the measurements registered with LVDT. Unlike LVDT-based techniques, DIC monitoring allowed us to measure deformations in masonry during the full test, detecting crack initiation even before it was visible to the eye.
SUBMITTER: Torres B
PROVIDER: S-EPMC7180737 | biostudies-literature | 2020 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA