Unknown

Dataset Information

0

Finite-temperature violation of the anomalous transverse Wiedemann-Franz law.


ABSTRACT: The Wiedemann-Franz (WF) law has been tested in numerous solids, but the extent of its relevance to the anomalous transverse transport and the topological nature of the wave function, remains an open question. Here, we present a study of anomalous transverse response in the noncollinear antiferromagnet Mn3Ge extended from room temperature down to sub-kelvin temperature and find that the anomalous Lorenz ratio remains close to the Sommerfeld value up to 100 K but not above. The finite-temperature violation of the WF correlation is caused by a mismatch between the thermal and electrical summations of the Berry curvature and not by inelastic scattering. This interpretation is backed by our theoretical calculations, which reveals a competition between the temperature and the Berry curvature distribution. The data accuracy is supported by verifying the anomalous Bridgman relation. The anomalous Lorenz ratio is thus an extremely sensitive probe of the Berry spectrum of a solid.

SUBMITTER: Xu L 

PROVIDER: S-EPMC7182422 | biostudies-literature | 2020 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Finite-temperature violation of the anomalous transverse Wiedemann-Franz law.

Xu Liangcai L   Li Xiaokang X   Lu Xiufang X   Collignon Clément C   Fu Huixia H   Koo Jahyun J   Fauqué Benoît B   Yan Binghai B   Zhu Zengwei Z   Behnia Kamran K  

Science advances 20200424 17


The Wiedemann-Franz (WF) law has been tested in numerous solids, but the extent of its relevance to the anomalous transverse transport and the topological nature of the wave function, remains an open question. Here, we present a study of anomalous transverse response in the noncollinear antiferromagnet Mn<sub>3</sub>Ge extended from room temperature down to sub-kelvin temperature and find that the anomalous Lorenz ratio remains close to the Sommerfeld value up to 100 K but not above. The finite-  ...[more]

Similar Datasets

| S-EPMC3144592 | biostudies-literature
| S-EPMC6112745 | biostudies-literature
| S-EPMC8802316 | biostudies-literature
| S-EPMC5153844 | biostudies-literature
| S-EPMC3834867 | biostudies-other
| S-EPMC5861060 | biostudies-literature
| S-EPMC8062501 | biostudies-literature
| S-EPMC2996287 | biostudies-literature
| S-EPMC1899483 | biostudies-literature
| S-EPMC9835886 | biostudies-literature