Analysis of piRNA expression spectra in a non-alcoholic fatty liver disease mouse model induced by a methionine- and choline-deficient diet.
Ontology highlight
ABSTRACT: Non-alcoholic fatty liver disease (NAFLD) has become a common health issue worldwide, and P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) have been shown to be differentially expressed in a variety of diseases. The aim of the present study was to investigate the potential relationship between piRNA and NAFLD. A NAFLD mouse model was established using a methionine- and choline-deficient (MCD) diet and methionine- and choline-sufficient (MCS) diet. Following this, mouse liver tissues were removed and stained with hematoxylin and eosin, and the levels of alanine aminotransferase, aspartate aminotransferase, total cholesterol and triglyceride were measured. Moreover, the liver tissues of the control and model groups were selected for piRNA gene chip analysis to identify piRNAs with differential expression in NAFLD. In addition, the differentially expressed piRNAs screened from the microarray were assessed by reverse transcription-quantitative PCR (RT-qPCR). piRNAs with potential research value were also selected for further analysis of target genes, using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. The present study identified a total of 1,285 piRNAs with differential expression levels. The results indicated that in the model group, 641 piRNAs were upregulated, while 644 piRNAs were downregulated. Furthermore, piRNAs were enriched in 'cancer', 'Hippo signaling', 'Wnt signaling' and 'Mitogen-activated protein kinase signaling' pathways. The RT-qPCR results demonstrated that piRNA DQ566704 and piRNA DQ723301 were significantly upregulated in the model group, which was largely consistent with the analysis results of the piRNA arrays. Therefore, the results of the piRNA arrays and the further analyses in the present study were considered reliable. Collectively, the present results suggest that differentially expressed piRNAs exist in NAFLD and may affect the development of NAFLD via related pathways.
SUBMITTER: Ma X
PROVIDER: S-EPMC7185076 | biostudies-literature | 2020 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA