Unknown

Dataset Information

0

Overexpression of miR-10a-5p facilitates the progression of osteoarthritis.


ABSTRACT: The current study was aimed at exploring the potential roles and possible mechanisms of miR-10a-5p in osteoarthritis (OA). We performed RT-qPCR, Western blot, CCK8, EdU Assay, and flow cytometry assay to clarify the roles of miR-10a-5p in OA. Furthermore, the whole transcriptome sequencing together with integrated bioinformatics analyses were conducted to elucidate the underlying mechanisms of miR-10a-5p involving in OA. Our results demonstrated that miR-10a-5p was upregulated in OA and acted as a significant contributing factor for OA. A large number of circRNAs, lncRNAs, miRNAs, and mRNAs were identified by overexpressing miR-10a-5p. Functional enrichment analyses indicated that these differentially-expressed genes were enriched in some important terms including PPAR signaling pathway, PI3K-Akt signaling pathway, and p53 signaling pathway. A total of 42 hub genes were identified in the protein-protein interaction network including SERPINA1, TTR, APOA1, and A2M. Also, we constructed the network regulatory interactions across coding and noncoding RNAs triggered by miR-10a-5p, which revealed the powerful regulating effects of miR-10a-5p. Moreover, we found that HOXA3 acted as the targeted genes of miR-10a-5p and miR-10a-5p contributed to the progression of OA by suppressing HOXA3 expression. Our findings shed insight on regulatory mechanisms of miR-10a-5p, which might provide novel therapeutic targets for OA.

SUBMITTER: Li HZ 

PROVIDER: S-EPMC7185093 | biostudies-literature | 2020 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Overexpression of miR-10a-5p facilitates the progression of osteoarthritis.

Li Hui-Zi HZ   Xu Xiang-He XH   Lin Nan N   Wang Da-Wei DW   Lin Yi-Ming YM   Su Zhong-Zhen ZZ   Lu Hua-Ding HD  

Aging 20200413 7


The current study was aimed at exploring the potential roles and possible mechanisms of miR-10a-5p in osteoarthritis (OA). We performed RT-qPCR, Western blot, CCK8, EdU Assay, and flow cytometry assay to clarify the roles of miR-10a-5p in OA. Furthermore, the whole transcriptome sequencing together with integrated bioinformatics analyses were conducted to elucidate the underlying mechanisms of miR-10a-5p involving in OA. Our results demonstrated that miR-10a-5p was upregulated in OA and acted as  ...[more]

Similar Datasets

| S-EPMC6365368 | biostudies-literature
| S-EPMC7476832 | biostudies-literature
| S-EPMC7500455 | biostudies-literature
| S-EPMC7417701 | biostudies-literature
| S-EPMC7388554 | biostudies-literature
| S-EPMC9279989 | biostudies-literature
| S-EPMC8573499 | biostudies-literature
| S-EPMC10416510 | biostudies-literature
| S-EPMC7093191 | biostudies-literature
| S-EPMC8527824 | biostudies-literature