Unknown

Dataset Information

0

Regulation of food intake by astrocytes in the brainstem dorsal vagal complex.


ABSTRACT: A role for glial cells in brain circuits controlling feeding has begun to be identified with hypothalamic astrocyte signaling implicated in regulating energy homeostasis. The nucleus of the solitary tract (NTS), within the brainstem dorsal vagal complex (DVC), integrates vagal afferent information from the viscera and plays a role in regulating food intake. We hypothesized that astrocytes in this nucleus respond to, and influence, food intake. Mice fed high-fat chow for 12?hr during the dark phase showed NTS astrocyte activation, reflected in an increase in the number (65%) and morphological complexity of glial-fibrillary acidic protein (GFAP)-immunoreactive cells adjacent to the area postrema (AP), compared to control chow fed mice. To measure the impact of astrocyte activation on food intake, we delivered designer receptors exclusively activated by designer drugs (DREADDs) to DVC astrocytes (encompassing NTS, AP, and dorsal motor nucleus of the vagus) using an adeno-associated viral (AAV) vector (AAV-GFAP-hM3Dq_mCherry). Chemogenetic activation with clozapine-N-oxide (0.3 mg/kg) produced in greater morphological complexity in astrocytes and reduced dark-phase feeding by 84% at 4 hr postinjection compared with vehicle treatment. hM3Dq-activation of DVC astrocytes also reduced refeeding after an overnight fast (71% lower, 4 hr postinjection) when compared to AAV-GFAP-mCherry expressing control mice. DREADD-mediated astrocyte activation did not impact locomotion. hM3Dq activation of DVC astrocytes induced c-FOS in neighboring neuronal feeding circuits (including in the parabrachial nucleus). This indicates that NTS astrocytes respond to acute nutritional excess, are involved in the integration of peripheral satiety signals, and can reduce food intake when activated.

SUBMITTER: MacDonald AJ 

PROVIDER: S-EPMC7187409 | biostudies-literature | 2020 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Regulation of food intake by astrocytes in the brainstem dorsal vagal complex.

MacDonald Alastair J AJ   Holmes Fiona E FE   Beall Craig C   Pickering Anthony E AE   Ellacott Kate L J KLJ  

Glia 20191227 6


A role for glial cells in brain circuits controlling feeding has begun to be identified with hypothalamic astrocyte signaling implicated in regulating energy homeostasis. The nucleus of the solitary tract (NTS), within the brainstem dorsal vagal complex (DVC), integrates vagal afferent information from the viscera and plays a role in regulating food intake. We hypothesized that astrocytes in this nucleus respond to, and influence, food intake. Mice fed high-fat chow for 12 hr during the dark pha  ...[more]

Similar Datasets

| S-EPMC10026361 | biostudies-literature
| S-EPMC8940294 | biostudies-literature
| S-EPMC4921504 | biostudies-literature
| S-EPMC7062837 | biostudies-literature
| S-EPMC7210107 | biostudies-literature
| S-EPMC8044434 | biostudies-literature
| S-EPMC2740923 | biostudies-literature
| S-EPMC2903398 | biostudies-literature
| S-EPMC7753200 | biostudies-literature
| S-EPMC5121412 | biostudies-literature