Unknown

Dataset Information

0

Long-term potentiation prevents ketamine-induced aberrant neurophysiological dynamics in the hippocampus-prefrontal cortex pathway in vivo.


ABSTRACT: N-methyl-D-aspartate receptor (NMDAr) antagonists such as ketamine (KET) produce psychotic-like behavior in both humans and animal models. NMDAr hypofunction affects normal oscillatory dynamics and synaptic plasticity in key brain regions related to schizophrenia, particularly in the hippocampus and the prefrontal cortex. It has been shown that prior long-term potentiation (LTP) occluded the increase of synaptic efficacy in the hippocampus-prefrontal cortex pathway induced by MK-801, a non-competitive NMDAr antagonist. However, it is not clear whether LTP could also modulate aberrant oscillations and short-term plasticity disruptions induced by NMDAr antagonists. Thus, we tested whether LTP could mitigate the electrophysiological changes promoted by KET. We recorded HPC-PFC local field potentials and evoked responses in urethane anesthetized rats, before and after KET administration, preceded or not by LTP induction. Our results show that KET promotes an aberrant delta-high-gamma cross-frequency coupling in the PFC and an enhancement in HPC-PFC evoked responses. LTP induction prior to KET attenuates changes in synaptic efficiency and prevents the increase in cortical gamma amplitude comodulation. These findings are consistent with evidence that increased efficiency of glutamatergic receptors attenuates cognitive impairment in animal models of psychosis. Therefore, high-frequency stimulation in HPC may be a useful tool to better understand how to prevent NMDAr hypofunction effects on synaptic plasticity and oscillatory coordination in cortico-limbic circuits.

SUBMITTER: Lopes-Aguiar C 

PROVIDER: S-EPMC7188848 | biostudies-literature | 2020 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Long-term potentiation prevents ketamine-induced aberrant neurophysiological dynamics in the hippocampus-prefrontal cortex pathway in vivo.

Lopes-Aguiar Cleiton C   Ruggiero Rafael N RN   Rossignoli Matheus T MT   Esteves Ingrid de Miranda IM   Peixoto-Santos José Eduardo JE   Romcy-Pereira Rodrigo N RN   Leite João P JP  

Scientific reports 20200428 1


N-methyl-D-aspartate receptor (NMDAr) antagonists such as ketamine (KET) produce psychotic-like behavior in both humans and animal models. NMDAr hypofunction affects normal oscillatory dynamics and synaptic plasticity in key brain regions related to schizophrenia, particularly in the hippocampus and the prefrontal cortex. It has been shown that prior long-term potentiation (LTP) occluded the increase of synaptic efficacy in the hippocampus-prefrontal cortex pathway induced by MK-801, a non-compe  ...[more]

Similar Datasets

| S-EPMC2707503 | biostudies-literature
| S-EPMC4640900 | biostudies-literature
| S-EPMC8257545 | biostudies-literature
| S-EPMC6674173 | biostudies-literature
| S-EPMC2941310 | biostudies-literature
| S-EPMC1544170 | biostudies-literature
| S-EPMC8359899 | biostudies-literature
| S-EPMC4869811 | biostudies-other
| S-EPMC4881038 | biostudies-other
| S-EPMC3799076 | biostudies-literature