Unknown

Dataset Information

0

4-Hydroxyestrone, an Endogenous Estrogen Metabolite, Can Strongly Protect Neuronal Cells Against Oxidative Damage.


ABSTRACT: Earlier studies showed that endogenous estrogens have neuroprotective effect against oxidative damage. The present study seeks to investigate the protective effect of various endogenous estrogen metabolites against oxidative neurotoxicity in vitro and in vivo. Using immortalized mouse hippocampal neuronal cells as an in vitro model, 4-hydroxyestrone, an estrone metabolite with little estrogenic activity, is found to have the strongest neuroprotective effect against oxidative neurotoxicity among 25 endogenous estrogen metabolites tested, and its protective effect is stronger than 17?-estradiol. Similarly, 4-Hydroxyestrone also exerts a stronger protective effect than 17?-estradiol against kanic acid-induced hippocampal oxidative damage in rats. Neuroprotection by 4-hydroxyestrone involves increased cytoplasmic translocation of p53 resulting from SIRT1-mediated deacetylation of p53. Analysis of brain microsomal enzymes shows that estrogen 4-hydroxylation is the main metabolic pathway in the central nervous system. Together, these results show that 4-hydroxyestrone is an endogenous neuroestrogen that can strongly protect against oxidative neuronal damage.

SUBMITTER: Choi HJ 

PROVIDER: S-EPMC7190733 | biostudies-literature | 2020 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

4-Hydroxyestrone, an Endogenous Estrogen Metabolite, Can Strongly Protect Neuronal Cells Against Oxidative Damage.

Choi Hye Joung HJ   Lee Anthony J AJ   Kang Ki Sung KS   Song Ji Hoon JH   Zhu Bao Ting BT  

Scientific reports 20200429 1


Earlier studies showed that endogenous estrogens have neuroprotective effect against oxidative damage. The present study seeks to investigate the protective effect of various endogenous estrogen metabolites against oxidative neurotoxicity in vitro and in vivo. Using immortalized mouse hippocampal neuronal cells as an in vitro model, 4-hydroxyestrone, an estrone metabolite with little estrogenic activity, is found to have the strongest neuroprotective effect against oxidative neurotoxicity among  ...[more]

Similar Datasets

| S-EPMC8408634 | biostudies-literature
| S-EPMC6384621 | biostudies-literature
| S-EPMC10245321 | biostudies-literature
| S-EPMC6387384 | biostudies-literature
| S-EPMC8282429 | biostudies-literature
| S-EPMC7264471 | biostudies-literature
| S-EPMC8986436 | biostudies-literature
| S-EPMC8957961 | biostudies-literature
| S-EPMC4698260 | biostudies-literature
| S-EPMC2669330 | biostudies-literature