Unknown

Dataset Information

0

Combining high-resolution scanning tunnelling microscopy and first-principles simulations to identify halogen bonding.


ABSTRACT: Scanning tunnelling microscopy (STM) is commonly used to identify on-surface molecular self-assembled structures. However, its limited ability to reveal only the overall shape of molecules and their relative positions is not always enough to fully solve a supramolecular structure. Here, we analyse the assembly of a brominated polycyclic aromatic molecule on Au(111) and demonstrate that standard STM measurements cannot conclusively establish the nature of the intermolecular interactions. By performing high-resolution STM with a CO-functionalised tip, we clearly identify the location of rings and halogen atoms, determining that halogen bonding governs the assemblies. This is supported by density functional theory calculations that predict a stronger interaction energy for halogen rather than hydrogen bonding and by an electron density topology analysis that identifies characteristic features of halogen bonding. A similar approach should be able to solve many complex 2D supramolecular structures, and we predict its increasing use in molecular nanoscience at surfaces.

SUBMITTER: Lawrence J 

PROVIDER: S-EPMC7192931 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4208058 | biostudies-literature
| S-EPMC8024922 | biostudies-literature
| S-EPMC5382267 | biostudies-literature
| S-EPMC3588911 | biostudies-literature
| S-EPMC7317790 | biostudies-literature
| S-EPMC4491188 | biostudies-literature
| S-EPMC6149874 | biostudies-literature
| S-EPMC2698135 | biostudies-literature
| S-EPMC7540446 | biostudies-literature
| S-EPMC4121316 | biostudies-literature