Unknown

Dataset Information

0

Effect of protein aggregation in wheat-legume mixed pasta diets on their in vitro digestion kinetics in comparison to "rapid" and "slow" animal proteins.


ABSTRACT: The aim of this work was to evaluate the impact of incorporating different legume flours (faba bean, lentil or split pea flours) on the pasta protein network and its repercussion on in vitro protein digestibility, in comparison with reference dairy proteins. Kinetics and yields of protein hydrolysis in legume enriched pasta and, for the first time, the peptidomes generated by the pasta at the end of the in vitro gastric and intestinal phases of digestion are presented. Three isoproteic (21%) legume enriched pasta with balanced essential amino acids, were made from wheat semolina and 62% to 79% of legume flours (faba bean or F-pasta; lentil or L-pasta and split pea or P-pasta). Pasta were prepared following the conventional pastification steps (hydration, mixing, extrusion, drying, cooking). Amino acid composition and protein network structure of the pasta were determined along with their culinary and rheological properties and residual trypsin inhibitor activity (3-5% of the activity initially present in raw legume flour). F- and L-pasta had contrasted firmness and proportion of covalently linked proteins. F-pasta had a generally weaker protein network and matrix structure, however far from the weakly linked soluble milk proteins (SMP) and casein proteins, which in addition contained no antitrypsin inhibitors and more theoretical cleavage sites for digestive enzymes. The differences in protein network reticulation between the different pasta and between pasta and dairy proteins were in agreement in each kinetic phase with the yield of the in vitro protein hydrolysis, which reached 84% for SMP, and 66% for casein at the end of intestinal phase, versus 50% for L- and P-pasta and 58% for F-pasta. The peptidome of legume enriched pasta is described for the first time and compared with the peptidome of dairy proteins for each phase of digestion. The gastric and intestinal phases were important stages of peptide differentiation between legumes and wheat. However, peptidome analysis revealed no difference in wheat-derived peptides in the three pasta diets regardless of the digestion phase, indicating that there was a low covalent interaction between wheat gluten and legume proteins.

SUBMITTER: Berrazaga I 

PROVIDER: S-EPMC7197814 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

Effect of protein aggregation in wheat-legume mixed pasta diets on their in vitro digestion kinetics in comparison to "rapid" and "slow" animal proteins.

Berrazaga Insaf I   Bourlieu-Lacanal Claire C   Laleg Karima K   Jardin Julien J   Briard-Bion Valérie V   Dupont Didier D   Walrand Stéphane S   Micard Valérie V  

PloS one 20200504 5


The aim of this work was to evaluate the impact of incorporating different legume flours (faba bean, lentil or split pea flours) on the pasta protein network and its repercussion on in vitro protein digestibility, in comparison with reference dairy proteins. Kinetics and yields of protein hydrolysis in legume enriched pasta and, for the first time, the peptidomes generated by the pasta at the end of the in vitro gastric and intestinal phases of digestion are presented. Three isoproteic (21%) leg  ...[more]

Similar Datasets

| S-EPMC6952492 | biostudies-literature
| S-EPMC6302243 | biostudies-literature
| S-EPMC9493084 | biostudies-literature
| S-EPMC4086119 | biostudies-literature
| S-EPMC6616939 | biostudies-literature
| S-EPMC6232839 | biostudies-literature
| S-EPMC8148588 | biostudies-literature
| S-EPMC8467960 | biostudies-literature
| PRJNA782807 | ENA
| S-EPMC6406663 | biostudies-literature