Overexpression of an Immune Checkpoint (CD155) in Breast Cancer Associated with Prognostic Significance and Exhausted Tumor-Infiltrating Lymphocytes: A Cohort Study.
Ontology highlight
ABSTRACT: Purpose:The immune checkpoint inhibitor is approved for breast cancer treatment, but the low expression of PD-L1 limits the immunotherapy. CD155 is another immune checkpoint protein in cancers and interacts with ligands to regulate immune microenvironment. This study is aimed at investigating the expression of CD155 and the association with prognosis and pathological features of breast cancer. Methods:126 patients were recruited this cohort study consecutively, and CD155 expression on tumor cells was detected by immunohistochemistry. The Kaplan-Meier survival curve and Cox hazard regression model were used to estimate the association. Results:38.1% patients had an overexpression of CD155, and the proportion of tumor cells with CD155 overexpression was 17%, 39%, 37%, and 62% among Luminal A, Luminal B, HER2-positive, and triple negative breast cancer cases, respectively (p < 0.05). Patients with CD155 overexpression had the Ki-67 index significantly higher than that of patients with low expression (42% vs. 26%). Though the number of tumor-infiltrating lymphocytes was higher among patients with CD155 overexpression (144/HPF vs. 95/HPF), the number of PD-1+ lymphocytes was significantly higher (52/HPF vs. 25/HPF, p < 0.05). Patients of CD155 overexpression had the disease-free and overall survival decreased by 13 months and 9 months, respectively (p < 0.05). CD155 overexpression was associated with an increased relapse (HR = 13.93, 95% CI 2.82, 68.91) and death risk for breast cancer patients (HR = 5.47, 1.42, 20.99). Conclusions:Overexpression of CD155 was correlated with more proliferative cancer cells and a dysfunctional immune microenvironment. CD155 overexpression introduced a worse relapse-free and overall survival and might be a potential immunotherapy target for breast cancer.
SUBMITTER: Li YC
PROVIDER: S-EPMC7201814 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
ACCESS DATA