Unknown

Dataset Information

0

Anodal transcranial direct current stimulation reduces collinear lateral inhibition in normal peripheral vision.


ABSTRACT: Collinear flanking stimuli can reduce the detectability of a Gabor target presented in peripheral vision. This phenomenon is called collinear lateral inhibition and it may contribute to crowding in peripheral vision. Perceptual learning can reduce collinear lateral inhibition in peripheral vision, however intensive training is required. Our aim was to assess whether modulation of collinear lateral inhibition can be achieved within a short time-frame using a single 20-minute session of primary visual cortex anodal transcranial direct current stimulation (a-tDCS). Thirteen observers with normal vision performed a 2AFC contrast detection task with collinear flankers positioned at a distance of 2? from the target (lateral inhibition) or 6? (control condition). The stimuli were presented 6° to the left of a central cross and fixation was monitored with an infra-red eye tracker. Participants each completed two randomly sequenced, single-masked stimulation sessions; real anodal tDCS and sham tDCS. For the 2? separation condition, a-tDCS induced a significant reduction in detection threshold (reduced lateral inhibition). Sham stimulation had no effect. No effects of a-tDCS were observed for the 6? separation condition. This result lays the foundation for future work investigating whether a-tDCS may be useful as a visual rehabilitation tool for individuals with central vision loss who are reliant on peripheral vision.

SUBMITTER: Raveendran RN 

PROVIDER: S-EPMC7202594 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

Anodal transcranial direct current stimulation reduces collinear lateral inhibition in normal peripheral vision.

Raveendran Rajkumar Nallour RN   Tsang Katelyn K   Tiwana Dilraj D   Chow Amy A   Thompson Benjamin B  

PloS one 20200506 5


Collinear flanking stimuli can reduce the detectability of a Gabor target presented in peripheral vision. This phenomenon is called collinear lateral inhibition and it may contribute to crowding in peripheral vision. Perceptual learning can reduce collinear lateral inhibition in peripheral vision, however intensive training is required. Our aim was to assess whether modulation of collinear lateral inhibition can be achieved within a short time-frame using a single 20-minute session of primary vi  ...[more]

Similar Datasets

| S-EPMC7535928 | biostudies-literature
| S-EPMC6890804 | biostudies-literature
| S-EPMC8491986 | biostudies-literature