Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus.
Ontology highlight
ABSTRACT: Isoflavonoids, which include a variety of secondary metabolites, are derived from the phenylpropanoid pathway and are distributed predominantly in leguminous plants. These compounds play a critical role in plant-environment interactions and are beneficial to human health. Isoflavone synthase (IFS) is a key enzyme in isoflavonoid synthesis and shares a common substrate with flavanone-3-hydroxylase (F3H) and flavone synthase II (FNS II). In this study, CRISPR/Cas9-mediated multiplex gene-editing technology was employed to simultaneously target GmF3H1, GmF3H2 and GmFNSII-1 in soya bean hairy roots and plants. Various mutation types and frequencies were observed in hairy roots. Higher mutation efficiencies were found in the T0 transgenic plants, with a triple gene mutation efficiency of 44.44%, and these results of targeted mutagenesis were stably inherited in the progeny. Metabolomic analysis of T0 triple-mutants leaves revealed significant improvement in isoflavone content. Compared with the wild type, the T3 generation homozygous triple mutants had approximately twice the leaf isoflavone content, and the soya bean mosaic virus (SMV) coat protein content was significantly reduced by one-third after infection with strain SC7, suggesting that increased isoflavone content enhanced the leaf resistance to SMV. The isoflavone content in the seeds of T2 triple mutants was also significantly increased. This study provides not only materials for the improvement of soya bean isoflavone content and resistance to SMV but also a simple system to generate multiplex mutations in soya bean, which may be beneficial for further breeding and metabolic engineering.
SUBMITTER: Zhang P
PROVIDER: S-EPMC7206993 | biostudies-literature | 2020 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA