Effects of Standard and Sustained-release Buprenorphine on the Minimum Alveolar Concentration of Isoflurane in C57BL/6 Mice.
Ontology highlight
ABSTRACT: Both standard and sustained-release injectable formulations of buprenorphine (Bup and BupSR, respectively) are used as preemptive analgesics, potentially affecting gas anesthetic requirements. This study tested the effects of Bup and BupSR on isoflurane requirements and confirmed that buprenorphine could reduce isoflurane requirements during a laparotomy in mice. We hypothesized that both Bup and BupSR would significantly decrease the required minimum alveolar concentration (MAC) of isoflurane. C57BL/6 mice received either isotonic crystalloid fluid (control), Bup (0.1 mg/kg), or BupSR (1.2 mg/kg) subcutaneously 10 min prior to the induction of anesthesia. Each anesthetized mouse was tested at 2 isoflurane concentrations. A 300-g noxious stimulus was applied at each isoflurane concentration, alternating between hindfeet. In addition, a subset of mice underwent terminal laparotomy or 60 min of anesthesia after injection with Bup, BupSR, or saline to ensure an appropriate surgical plane of anesthesia. Mice were maintained at the lowest isoflurane concentration that resulted in 100% of mice at a surgical plane from the aforementioned MAC experiments (control, 2.0%; Bup and BupSR, 1.7%). Analysis showed that both Bup and BupSR significantly decreased isoflurane requirements by 25.5% and 14.4%, respectively. The isoflurane MAC for the control injection was 1.80% ± 0.09%; whereas Bup and BupSR decreased MAC to 1.34% ± 0.08% and 1.54% ± 0.09%, respectively. Sex was not a significantly different between the injection groups during MAC determination. All of the mice that underwent surgery achieved a surgical plane of anesthesia on the prescribed regimen and recovered normally after discontinuation of isoflurane. Lastly, heart and respiratory rates did not differ between mice that underwent surgery and those that were anesthetized only. Bup and BupSR are MAC-sparing in male and female C57BL/6 mice and can be used for effective multimodal anesthesia.
SUBMITTER: LaTourette PC
PROVIDER: S-EPMC7210738 | biostudies-literature | 2020 May
REPOSITORIES: biostudies-literature
ACCESS DATA