Project description:Thrombosis with thrombocytopenia syndrome (TTS) is an extremely rare but potentially serious adverse event following immunization with the adenovirus vector-based COVID-19 vaccines Ad26.COV2.S (Janssen / Johnson & Johnson) or ChAdOx1 (AstraZeneca). However, no cases of TTS have been reported in over 1.5 million individuals who received a second immunization with Ad26.COV2.S in the United States, suggesting that anti-vector immunity may reduce TTS risk. Here we show robust stimulation of platelet activation and coagulation pathways and innate immune pathways in patients with TTS but only transient activation of these pathways following vaccination. We evaluated proteomic profiles in 2 patients with TTS and transcriptomic and proteomic profiles in 20 people following an initial dose and a booster dose of Ad26.COV2.S and in 14 people who received the mRNA vaccines BNT162b2 or mRNA-1273. Initial Ad26.COV2.S vaccination induced transient activation of platelet activation and coagulation pathways and innate proinflammatory pathways that resolved by day 7. TTS patients showed enhanced and sustained upregulation of these pathways, whereas a second immunization with Ad26.COV2.S or a reduced initial dose of Ad26.COV2.S resulted in lower activation of these pathways. These data provide insight into TTS pathogenesis and suggest a potential strategy for reducing TTS risk by lowering the dose of Ad26.COV2.S.
Project description:BackgroundCoagulopathy and thromboembolic events are among the complications of Corona Virus disease 2019 (COVID-19). Abnormal coagulation parameters in COVID-19 patients are important prognostic factors of disease severity. The aim of this study was to analyze coagulation profiles of hospitalized COVID-19 patients in Addis Ababa, Ethiopia.MethodsThis prospective cross-sectional study was conducted among 455 Covid-19 patients admitted at Millennium COVID-19 care and treatment center, Addis Ababa, Ethiopia from July 1- October 23, 2020. Prothrombin Time (PT), Activated Partial Thromboplastin Time (APTT) and International normalized ratio (INR) were determined on HUMACLOT DUE PLUS® coagulation analyzer (Wiesbaden, Germany). In all statistical analysis of results, p<0.05 was defined as statistically significant.ResultA prolonged prothrombin time was found in 46.8% of study participants with COVID-19 and a prolonged prothrombin time and elevated INR in 53.3% of study subjects with severe and 51% of critically COVID patients. Thrombocytopenia was detected in 22.1% of COVID-19 patients. 50.5% and 51.3% of COVID-19 patients older than 55 years had thrombocytopenia and prolonged APTT respectively.ConclusionIn this study, prolonged prothrombin time and elevated INR were detected in more than 50% of severe and critical COVID-19 patients. Thrombocytopenia and prolonged APTT were dominant in COVID-19 patients older than 55 years. Thus, we recommend emphasis to be given for monitoring of platelet count, PT, APTT and INR in hospitalized and admitted COVID-19 patients.
Project description:Many patients who are diagnosed with coronavirus disease 2019 (COVID-19) suffer from venous thromboembolic complications despite the use of stringent anticoagulant prophylaxis. Studies on the exact mechanism(s) underlying thrombosis in COVID-19 are limited as animal models commonly used to study venous thrombosis pathophysiology (i.e. rats and mice) are naturally not susceptible to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Ferrets are susceptible to SARS-CoV-2 infection, successfully used to study virus transmission, and were previously used to study activation of coagulation and thrombosis during influenza virus infection. Here, we used plasma and lung material from SARS-CoV-2-inoculated ferrets to explore their use in studying COVID-19-associated changes in coagulation and thrombosis. Lungs of ferrets inoculated intranasally with SARS-CoV-2 demonstrated alveolar septa that were mildly expanded by macrophages, and diffuse interstitial histiocytic pneumonia. However, no macroscopical or microscopical evidence of vascular thrombosis in the lungs of SARS-CoV-2-inoculated ferrets was found. Longitudinal plasma profiling using a mass spectrometry-based approach revealed minor differences in plasma protein profiles in SARS-CoV-2-inoculated ferrets up to 2 weeks post-infection. Apart from fibrinogen, the majority of plasma coagulation factors were stable and demonstrated a low coefficient of variation. We conclude that while ferrets are an essential and well-suited animal model to study SARS-CoV-2 transmission, their use to study SARS-CoV-2-related changes relevant to thrombotic disease is limited.
Project description:The world is amid a pandemic caused by severe acute respiratory syndrome-coronavirus 2. Severe acute respiratory syndrome-coronavirus causes serious respiratory tract infections that can lead to viral pneumonia, acute respiratory distress syndrome, and death. Some patients with coronavirus disease 2019 (COVID-19) have an activated coagulation system characterized by elevated plasma levels of d-dimer-a biomarker of fibrin degradation. Importantly, high levels of D-dimer on hospital admission are associated with increased risk of mortality. Venous thromboembolism is more common than arterial thromboembolism in hospitalized COVID-19 patients. Pulmonary thrombosis and microvascular thrombosis are observed in autopsy studies, and this may contribute to the severe hypoxia observed in COVID-19 patients. It is likely that multiple systems contribute to thrombosis in COVID-19 patients, such as activation of coagulation, platelet activation, hypofibrinolysis, endothelial cell dysfunction, inflammation, neutrophil extracellular traps, and complement. Targeting these different pathways may reduce thrombosis and improve lung function in COVID-19 patients.
Project description:There has been growing attention toward the predictive value of the coagulation parameters abnormalities in COVID-19. The aim of the study was to investigate the role of coagulation parameters namely Prothrombin concentration (PC), activated Partial thromboplastin Time (aPTT), D-Dimer (DD), Anti Thrombin III (ATIII) and fibrinogen (Fg) together with hematological, and biochemical parameters in predicting the severity of COVID-19 patients and estimating their relation to clinical outcomes in hospitalized and severe COVID-19 Patients. In a prospective study, a total of 267 newly diagnosed COVID-19 patients were enrolled. They were divided into two groups; hospitalized group which included 144 patients and non-hospitalized group that included 123 patients. According to severity, the patients were divided into severe group which included 71 patients and non-severe group that included 196 patients who were admitted to ward or not hospitalized. Clinical evaluation, measurement of coagulation parameters, biochemical indices, outcome and survival data were recorded. Hospitalized and severe patients were older and commonly presented with dyspnea (P ≤ 0.001). Differences in coagulation parameters were highly significant in hospitalized and severe groups in almost all parameters, same for inflammatory markers. D-dimer, AT-III and LDH showed excellent independently prediction of severity risk. With a cut-off of > 2.0 ng/L, the sensitivity and specificity of D dimer in predicting severity were 76% and 93%, respectively. Patients with coagulation abnormalities showed worse survival than those without (p = 0.002). Early assessment and dynamic monitoring of coagulation parameters may be a benchmark in the prediction of COVID-19 severity and death.
Project description:Coronavirus disease 2019 (COVID-19) not only targets the respiratory system but also triggers a cytokine storm and a series of complications, such as gastrointestinal problems, acute kidney injury, and myocardial ischemia. The use of natural products has been utilized to ease the symptoms of COVID-19, and in some cases, to strengthen the immune system against COVID-19. Natural products are readily available and have been regularly consumed for various health benefits. COVID-19 has been reported to be associated with the risk of thromboembolism and deep vein thrombosis. These thrombotic complications often affects mortality and morbidity. Panax ginseng, which has been widely consumed for its various health benefits has also been reported for its therapeutic effects against cardiovascular disease, thrombosis and platelet aggregation. In this review, we propose that P. ginseng can be consumed as a supplementation against the various associated complications of COVID-19, especially against thrombosis. We utilized the network pharmacology approach to validate the potential therapeutic properties of P. ginseng against COVID-19 mediated thrombosis, the coagulation pathway and platelet aggregation. Additionally, we aimed to investigate the roles of P. ginseng against COVID-19 with the involvement of platelet-leukocyte aggregates in relation to immunity-related responses in COVID-19.
Project description:BackgroundLeprosy is a chronic dermato-neurological disease caused by Mycobacterium leprae infection. In 2016, more than 200,000 new cases of leprosy were detected around the world, representing the most frequent cause of infectious irreversible deformities and disabilities.Principal findingsIn the present work, we demonstrate a consistent procoagulant profile on 40 reactional and non-reactional multibacillary leprosy patients. A retrospective analysis in search of signs of coagulation abnormalities among 638 leprosy patients identified 35 leprosy patients (5.48%) which displayed a characteristic lipid-like clot formed between blood clot and serum during serum harvesting, herein named 'leprosum clot'. Most of these patients (n = 16, 45.7%) belonged to the lepromatous leprosy pole of the disease. In addition, formation of the leprosum clot was directly correlated with increased plasma levels of soluble tissue factor and von Willebrand factor. High performance thin layer chromatography demonstrated a high content of neutral lipids in the leprosum clot, and proteomic analysis demonstrated that the leprosum clot presented in these patients is highly enriched in fibrin. Remarkably, differential 2D-proteomics analysis between leprosum clots and control clots identified two proteins present only in leprosy patients clots: complement component 3 and 4 and inter-alpha-trypsin inhibitor family heavy chain-related protein (IHRP). In agreement with those observations we demonstrated that M. leprae induces hepatocytes release of IHRP in vitro.ConclusionsWe demonstrated that leprosy MB patients develop a procoagulant status due to high levels of plasmatic fibrinogen, anti-cardiolipin antibodies, von Willebrand factor and soluble tissue factor. We propose that some of these components, fibrinogen for example, presents potential as predictive biomarkers of leprosy reactions, generating tools for earlier diagnosis and treatment of these events.
Project description:Characterization of the transcriptional signatures of 771 human genes and 19 coronavirus genes in skin samples collected from the borders of hospital-acquired sacral pressure injuries (HASPIs) that developed in individuals with and without COVID-19. Samples included pressure ulcers from individuals without COVID-19 (10), pressure ulcers from individuals with COVID-19 (5), as well as pressure ulcers with thrombotic vasculopathy histopathology from individuals with COVID-19 (8).
Project description:PurposeThe novel coronavirus COVID-19, has caused a worldwide pandemic, impairing several human organs and systems. Whether COVID-19 affects human thyroid function remains unknown.MethodsEighty-four hospitalized COVID-19 patients in the First Affiliated Hospital, Zhejiang University School of Medicine (Hangzhou, China) were retrospectively enrolled in this study, among which 22 cases had complete records of thyroid hormones. In addition, 91 other patients with pneumonia and 807 healthy subjects were included as controls.ResultsWe found that levels of total triiodothyronine (TT3) and thyroid stimulating hormone (TSH) were lower in COVID-19 patients than healthy group (p < 0.001). Besides, TSH level in COVID-19 patients was obviously lower than non-COVID-19 patients (p < 0.001). Within the group of COVID-19, 61.9% (52/84) patients presented with thyroid function abnormalities and the proportion of thyroid dysfunction was higher in severe cases than mild/moderate cases (74.6 vs. 23.8%, p < 0.001). Patients with thyroid dysfunction tended to have longer viral nucleic acid cleaning time (14.1 ± 9.4 vs. 10.6 ± 8.3 days, p = 0.088). To note, thyroid dysfunction was also associated with decreased lymphocytes (p < 0.001) and increased CRP (p = 0.002). The correlation between TT3 and TSH level seemed to be positive rather than negative in the early stage, and gradually turned to be negatively related over time.ConclusionThyroid function abnormalities are common in COVID-19 patients, especially in severe cases. This might be partially explained by nonthyroidal illness syndrome.
Project description:Thrombosis with thrombocytopenia syndrome (TTS) is a rare but potentially severe adverse event following immunization with adenovirus vector-based COVID-19 vaccines such as Ad26.COV2.S (Janssen) and ChAdOx1 (AstraZeneca). However, no case of TTS has been reported in over 1.5 million individuals who received a second immunization with Ad26.COV2.S in the United States. Here we utilize transcriptomic and proteomic profiling to compare individuals who receive two doses of Ad26.COV2.S with those vaccinated with BNT162b2 or mRNA-1273. Initial Ad26.COV2.S vaccination induces transient activation of platelet and coagulation and innate immune pathways that resolve by day 7; by contrast, patients with TTS show robust upregulation of these pathways on days 15-19 following initial Ad26.COV2.S vaccination. Meanwhile, a second immunization or a reduced initial dose of Ad26.COV2.S induces lower activation of these pathways than does the full initial dose. Our data suggest a role of coagulation and proinflammatory pathways in TTS pathogenesis, which may help optimize vaccination regimens to reduce TTS risk.