Project description:The use of intraoperative fluoroscopy is standard among hip arthroscopist to evaluate and confirm the adequacy of cam resection in patients with femoroacetabular impingement syndrome. However, given the inherent limitations of fluoroscopy, additional intraoperative imaging, such as ultrasound, should be pursued. We offer a technique to measure alpha angles intraoperatively using ultrasound to determine adequate cam resection. Technique Video Video 1 Alpha angle measurement of cam deformity in right hip using ultrasound in patient with femoroacetabular impingement syndrome. In the supine position, the hip is dynamically moved into 6 positions preoperatively and postoperatively for adequate assessment of the cam deformity. Key landmarks including the femoral neck and distal end of the joint capsule are identified. After placement of a perfect circle around the femoral head, the alpha angle is calculated using the axis of the femoral neck to the point at which the head loses sphericity.
Project description:Maximal safe resection is the standard of care in the neurosurgical treatment of high-grade gliomas. To aid surgeons in the operating room, adjuvant techniques and technologies centered around improving intraoperative visualization of tumor tissue have been developed. In this review, we will discuss the most advanced technologies, specifically fluorescence-guided surgery, intraoperative imaging, neuromonitoring modalities, and microscopic imaging techniques. The goal of these technologies is to improve detection of tumor tissue beyond what conventional microsurgery has permitted. We describe the various advances, the current state of the literature that have tested the utility of the different adjuvants in clinical practice, and future directions for improving intraoperative technologies.
Project description:Laryngeal cancer is a prevalent head and neck malignancy, with poor prognosis and low survival rates for patients with advanced disease. Treatment consists of unimodal therapy through surgery or radiotherapy in early staged tumors, while advanced stage tumors are generally treated with multimodal chemoradiotherapy or (total) laryngectomy followed by radiotherapy. Still, the recurrence rate for advanced laryngeal cancer is between 25 and 50%. In order to improve surgical resection of laryngeal cancer and reduce local recurrence rates, various intraoperative optical imaging techniques have been investigated. In this systematic review, we identify these technologies, evaluating the current state and future directions of optical imaging for this indication. Narrow-band imaging (NBI) and autofluorescence (AF) are established tools for early detection of laryngeal cancer. Nonetheless, their intraoperative utility is limited by an intrinsic inability to image beyond the (sub-)mucosa. Likewise, contact endoscopy (CE) and optical coherence tomography (OCT) are technically cumbersome and only useful for mucosal margin assessment. Research on fluorescence imaging (FLI) for this application is sparse, dealing solely with nonspecific fluorescent agents. Evidently, the imaging modalities that have been investigated thus far are generally unsuitable for deep margin assessment. We discuss two optical imaging techniques that can overcome these limitations and suggest how they can be used to achieve adequate margins in laryngeal cancer at all stages.
Project description:Glioblastoma multiforme (GBM) represents the most common and aggressive central nervous system tumor associated with a poor prognosis. The aim of this study was to depict the role of intraoperative imaging techniques in GBM surgery and how they can ensure the maximal extent of resection (EOR) while preserving the functional outcome. The authors conducted a systematic review following PRISMA guidelines on the PubMed/Medline and Scopus databases. A total of 1747 articles were identified for screening. Studies focusing on GBM-affected patients, and evaluations of EOR and functional outcomes with the aid of advanced image-guided techniques were included. The resulting studies were assessed for methodological quality using the Risk of Bias in Systematic Review tool. Open Science Framework registration DOI 10.17605/OSF.IO/3FDP9. Eighteen studies were eligible for this systematic review. Among the selected studies, eight analyzed Sodium Fluorescein, three analyzed 5-aminolevulinic acid, two evaluated IoMRI imaging, two evaluated IoUS, and three evaluated multiple intraoperative imaging techniques. A total of 1312 patients were assessed. Gross Total Resection was achieved in the 78.6% of the cases. Follow-up time ranged from 1 to 52 months. All studies assessed the functional outcome based on the Karnofsky Performance Status scale, while one used the Neurologic Assessment in Neuro-Oncology score. In 77.7% of the cases, the functional outcome improved or was stable over the pre-operative assessment. Combining multiple intraoperative imaging techniques could provide better results in GBM surgery than a single technique. However, despite good surgical outcomes, patients often present a neurocognitive decline leading to a marked deterioration of the quality of life. Advanced intraoperative image-guided techniques can allow a better understanding of the anatomo-functional relationships between the tumor and the surrounding brain, thus maximizing the EOR while preserving functional outcomes.
Project description:Clival chordomas are locally invasive midline skull base tumors arising from remnants of the primitive notochord. Intracranial vasculature and cranial nerve involvement of tumors in the paraclival region necessitates image guidance that provides accurate real-time feedback during resection. Several intraoperative image guidance modalities have been introduced as adjuncts to endoscopic endonasal surgery, including stereotactic neuronavigation, intraoperative ultrasound, intraoperative MRI, and intraoperative CT. Gross total resection of chordomas is associated with a lower recurrence rate; therefore, intraoperative imaging may improve long-term outcomes by enhancing the extent of resection. However, among these options, effectiveness and accessibility vary between institutions. We previously published the first use of an end-firing probe in the resection of a clival chordoma. End-firing probes provide a single field of view, primarily limited to depth estimation. In this case report, we discuss the benefits of employing a novel minimally invasive side-firing ultrasound probe as a cost-effective and time-efficient option to navigate the anatomy of the paraclival region and guide endoscopic endonasal resection of a large complex clival chordoma.
Project description:BackgroundIntraparenchymal cerebral cavernous malformation is difficult to localize intraoperatively with conventional frameless navigation due to the "brain shift" effect. We conducted this study to evaluate the efficacy and safety of intraoperative magnetic resonance image (iMRI)-assisted neuro-port surgery for the resection of cerebral intraparenchymal cavernous malformation.MethodsBetween April 2016 and December 2017, 54 consecutive patients with intraparenchymal cerebral cavernous malformation who get surgical treatment in our hospital were enrolled into this study. Twenty-one patients were treated using iMRI-assisted neuro-port surgery (experiment group), and 33 patients underwent treatment by conventional microsurgery (control group). The iMRI was used in all cases for the compensation of the "brain shift" effect and keeping the navigation system up-to-date. The surgical resection rate, the total operation time, and the preoperative and postoperative Karnofsky Performance Status (KPS) scores were determined to evaluate the operative procedures.ResultsThere were no significant differences between the two groups in mean age, gender ratio, and volume of lesions (P > 0.05). For the experiment group, the average duration of the procedure was 188.8 min with total resection of the lesions achieved in all 21 cases. For the control group, the average duration of the procedure was 238.2 min with total resection of the lesions achieved in 25 of 33 cases. The differences in the average duration of the procedure and the number of totally resected lesions between the two groups were statistically significant (P < 0.05). Regarding postoperative neurological function, postoperative KPS scores for the experiment group were significantly higher than those of the control group (P = 0.018).ConclusionOur results show that iMRI-assisted neuro-port surgery is helpful for intraparenchymal cerebral cavernous malformation surgery. The method provides high accuracy and efficiency for lesion targeting and permits excellent anatomic orientation. With the assistance of iMRI technology, we achieved a higher resection rate and a lower incidence of postoperative neurological deficits. Additionally, iMRI is helpful for the compensation of the "brain shift" effect, and it can update the navigation system.
Project description:BackgroundIntraoperative MRI and 5-aminolaevulinic acid guided surgery are useful to maximize the extent of glioblastoma resection. Intraoperative ultrasound is used as a time-and cost-effective alternative, but its value has never been assessed in a trial. The goal of this randomized controlled trial was to assess the value of intraoperative B-mode ultrasound guided surgery on the extent of glioblastoma resection.Materials and methodsIn this randomized controlled trial, patients of 18 years or older with a newly diagnosed presumed glioblastoma, deemed totally resectable, presenting at the Erasmus MC (Rotterdam, The Netherlands) were enrolled and randomized (1:1) into intraoperative B-mode ultrasound guided surgery or resection under standard neuronavigation. The primary outcome of this study was complete contrast-enhancing tumor resection, assessed quantitatively by a blinded neuroradiologist on pre- and post-operative MRI scans. This trial was registered with ClinicalTrials.gov (NCT03531333).ResultsWe enrolled 50 patients between November 1, 2016 and October 30, 2019. Analysis was done in 23 of 25 (92%) patients in the intraoperative B-mode ultrasound group and 24 of 25 (96%) patients in the standard surgery group. Eight (35%) of 23 patients in the intraoperative B-mode ultrasound group and two (8%) of 24 patients in the standard surgery group underwent complete resection (p=0.036). Baseline characteristics, neurological outcome, functional performance, quality of life, complication rates, overall survival and progression-free survival did not differ between treatment groups (p>0.05).ConclusionsIntraoperative B-mode ultrasound enables complete resection more often than standard surgery without harming patients and can be considered to maximize the extent of glioblastoma resection during surgery.
Project description:BackgroundSitus inversus totalis (SIT) is a rare congenital condition that involves complete transposition (right to left reversal) of the visceral organs. Laparoscopic surgery can be challenging because of the mirror-image anatomy. We describe a surgical innovation in laparoscopic surgery for SIT.Case presentationA 41-year-old man with SIT was diagnosed with an appendiceal tumor and underwent laparoscopic-assisted ileocecal resection. Preoperatively, we evaluated anatomical variations using 3D-computed tomography and simulated mirror images by watching flipped videos of patients with normal anatomy undergoing similar operations. During the operation, port placement and the surgeons' standing positions were reversed. Additionally, two monitors were placed at the patient's head, with one monitor showing original images, and the other showing flipped images that looked the same as the normal anatomy. We checked the range of the mobilized region and important anatomical structures by watching the flipped monitor as needed. The patient's postoperative course was uneventful.ConclusionsDue to the complexities of laparoscopic surgery for SIT, preoperative preparation and surgical innovation are necessary for safe surgery. Several suggestions have been made to understand anatomical anomalies and improve operability; however, surgeons must focus on the mirror-image anatomy throughout the operation. Therefore, the use of intraoperative flipped monitor will be helpful for surgeons in reducing the risk of anatomical misidentification.
Project description:Daily recombinant human GH (rhGH) is currently approved for use in children and adults with GH deficiency (GHD) in many countries with relatively few side-effects. Nevertheless, daily injections can be painful and distressing for some patients, often resulting in non-adherence and reduction of treatment outcomes. This has prompted the development of numerous long-acting GH (LAGH) analogs that allow for decreased injection frequency, ranging from weekly, bi-weekly to monthly. These LAGH analogs are attractive as they may theoretically offer increased patient acceptance, tolerability, and therapeutic flexibility. Conversely, there may also be pitfalls to these LAGH analogs, including an unphysiological GH profile and differing molecular structures that pose potential clinical issues in terms of dose initiation, therapeutic monitoring, incidence and duration of side-effects, and long-term safety. Furthermore, fluctuations of peak and trough serum GH and IGF-I levels and variations in therapeutic efficacy may depend on the technology used to prolong GH action. Previous studies of some LAGH analogs have demonstrated non-inferiority compared to daily rhGH in terms of increased growth velocity and improved body composition in children and adults with GHD, respectively, with no significant unanticipated adverse events. Currently, two LAGH analogs are marketed in Asia, one recently approved in the United States, another previously approved but not marketed in Europe, and several others proceeding through various stages of clinical development. Nevertheless, several practical questions still remain, including possible differences in dose initiation between naïve and switch-over patients, methodology of dose adjustment/s, timing of measuring serum IGF-I levels, safety, durability of efficacy and cost-effectiveness. Long-term surveillance of safety and efficacy of LAGH analogs are needed to answer these important questions.
Project description:Detecting adenomyosis in the myometrium is a challenge since it is infiltrative with ill-defined margins and can be often confused with uterine fibroids. However, recent advances, such as ultrasound elastography, have enabled its detection in the myometrium, thereby facilitating its accurate diagnosis. We report our experience of performing complete laparoscopic resection of adenomyosis under real-time ultrasound elastography guidance in a 32-year-old woman who underwent laparoscopic adenomyomectomy following severe dysmenorrhea and heavy menstrual bleeding. Real-time ultrasound elastography was also utilized intraoperatively to detect residual adenomyosis. Complete adenomyosis resection and uterine reconstruction were achieved. Follow-up magnetic resonance imaging was conducted to confirm successful uterine reconstruction. The patient recovered rapidly with no complications. Intraoperative elastography-guided laparoscopic adenomyomectomy was feasible and effective in completely removing adenomyotic lesions.