Unknown

Dataset Information

0

Target of Rapamycin (TOR) Negatively Regulates Ethylene Signals in Arabidopsis.


ABSTRACT: Target of rapamycin (TOR) acts as a master regulator in coordination of cell growth with energy and nutrient availability. Despite the increased appreciation of the essential role of the TOR complex in interaction with phytohormone signaling, little is known about its function on ethylene signaling. Here, through expression analysis, genetic and biochemical approaches, we reveal that TOR functions in the regulation of ethylene signals. Transcriptional analysis indicates that TOR inhibition by AZD8055 upregulated senescence- and ethylene-related genes expression. Furthermore, ethylene insensitive mutants like etr1-1, ein2-5 and ein3 eil1, showed more hyposensitivity to AZD8055 than that of WT in hypocotyl growth inhibition. Similarly, blocking ethylene signals by ethylene action inhibitor Ag+ or biosynthesis inhibitor aminoethoxyvinylglycine (AVG) largely rescued hypocotyl growth even in presence of AZD8055. In addition, we also demonstrated that Type 2A phosphatase-associated protein of 46 kDa (TAP46), a downstream component of TOR signaling, physically interacts with 1-aminocy-clopropane-1-carboxylate (ACC) synthase ACS2 and ACS6. Arabidopsis overexpressing ACS2 or ACS6 showed more hypersensitivity to AZD8055 than WT in hypocotyl growth inhibition. Moreover, ACS2/ACS6 protein was accumulated under TOR suppression, implying TOR modulates ACC synthase protein levels. Taken together, our results indicate that TOR participates in negatively modulating ethylene signals and the molecular mechanism is likely involved in the regulation of ethylene biosynthesis by affecting ACSs in transcription and protein levels.

SUBMITTER: Zhuo F 

PROVIDER: S-EPMC7215648 | biostudies-literature | 2020 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Target of Rapamycin (TOR) Negatively Regulates Ethylene Signals in <i>Arabidopsis</i>.

Zhuo Fengping F   Xiong Fangjie F   Deng Kexuan K   Li Zhengguo Z   Ren Maozhi M  

International journal of molecular sciences 20200412 8


Target of rapamycin (TOR) acts as a master regulator in coordination of cell growth with energy and nutrient availability. Despite the increased appreciation of the essential role of the TOR complex in interaction with phytohormone signaling, little is known about its function on ethylene signaling. Here, through expression analysis, genetic and biochemical approaches, we reveal that TOR functions in the regulation of ethylene signals. Transcriptional analysis indicates that TOR inhibition by AZ  ...[more]

Similar Datasets

| S-EPMC9446147 | biostudies-literature
| S-EPMC122964 | biostudies-literature
| S-EPMC2821410 | biostudies-literature
| S-EPMC34619 | biostudies-literature
| S-EPMC3268441 | biostudies-literature
2007-06-20 | GSE7987 | GEO
| S-EPMC5379187 | biostudies-literature
| S-EPMC3437835 | biostudies-other
| S-EPMC6332313 | biostudies-literature
| S-EPMC5646859 | biostudies-literature