Unknown

Dataset Information

0

Sustainability management of short-lived freshwater fish in human-altered ecosystems should focus on adult survival.


ABSTRACT: Fish populations globally are susceptible to endangerment through exploitation and habitat loss. We present theoretical simulations to explore how reduced adult survival (age truncation) might affect short-lived freshwater fish species in human-altered contemporary environments. Our simulations evaluate two hypothetical "average fish" and five example fish species of age 1 or age 2 maturity. From a population equilibrium baseline representing a natural, unaltered environment we impose systematic reductions in adult survival and quantify how age truncation affects the causes of variation in population growth rate. We estimate the relative contributions to population growth rate arising from simulated temporal variation in age-specific vital rates and population structure. At equilibrium and irrespective of example species, population structure (first adult age class) and survival probability of the first two adult age classes are the most important determinants of population growth. As adult survival decreases, the first reproductive age class becomes increasingly important to variation in population growth. All simulated examples show the same general pattern of change with age truncation as known for exploited, longer-lived fish species in marine and freshwater environments. This implies age truncation is a general potential concern for fish biodiversity across life history strategies and ecosystems. Managers of short-lived, freshwater fishes in contemporary environments often focus on supporting reproduction to ensure population persistence. However, a strong focus on water management to support reproduction may reduce adult survival. Sustainability management needs a focus on mitigating adult mortality in human-altered ecosystems. A watershed spatial extent embracing land and water uses may be necessary to identify and mitigate causes of age truncation in freshwater species. Achieving higher adult survival will require paradigm transformations in society and government about water management priorities.

SUBMITTER: Hatch MD 

PROVIDER: S-EPMC7217442 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

Sustainability management of short-lived freshwater fish in human-altered ecosystems should focus on adult survival.

Hatch Michael D MD   Abadi Fitsum F   Boeing Wiebke J WJ   Lois Sabela S   Porter Michael D MD   Cowley David E DE  

PloS one 20200512 5


Fish populations globally are susceptible to endangerment through exploitation and habitat loss. We present theoretical simulations to explore how reduced adult survival (age truncation) might affect short-lived freshwater fish species in human-altered contemporary environments. Our simulations evaluate two hypothetical "average fish" and five example fish species of age 1 or age 2 maturity. From a population equilibrium baseline representing a natural, unaltered environment we impose systematic  ...[more]

Similar Datasets

| S-EPMC6130382 | biostudies-other
| S-EPMC2632619 | biostudies-literature
| S-EPMC3391286 | biostudies-literature
| S-EPMC6953519 | biostudies-literature
| S-EPMC11069195 | biostudies-literature
| S-EPMC4568973 | biostudies-literature
| S-EPMC8473916 | biostudies-literature
| S-EPMC4716507 | biostudies-literature
| S-EPMC2585814 | biostudies-literature
| S-EPMC3003073 | biostudies-literature