Automated image analysis system for studying cardiotoxicity in human pluripotent stem cell-Derived cardiomyocytes.
Ontology highlight
ABSTRACT: BACKGROUND:Cardiotoxicity, characterized by severe cardiac dysfunction, is a major problem in patients treated with different classes of anticancer drugs. Development of predictable human-based models and assays for drug screening are crucial for preventing potential drug-induced adverse effects. Current animal in vivo models and cell lines are not always adequate to represent human biology. Alternatively, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) show great potential for disease modelling and drug-induced toxicity screenings. Fully automated high-throughput screening of drug toxicity on hiPSC-CMs by fluorescence image analysis is, however, very challenging, due to clustered cell growth patterns and strong intracellular and intercellular variation in the expression of fluorescent markers. RESULTS:In this paper, we report on the development of a fully automated image analysis system for quantification of cardiotoxic phenotypes from hiPSC-CMs that are treated with various concentrations of anticancer drugs doxorubicin or crizotinib. This high-throughput system relies on single-cell segmentation by nuclear signal extraction, fuzzy C-mean clustering of cardiac ?-actinin signal, and finally nuclear signal propagation. When compared to manual segmentation, it generates precision and recall scores of 0.81 and 0.93, respectively. CONCLUSIONS:Our results show that our fully automated image analysis system can reliably segment cardiomyocytes even with heterogeneous ?-actinin signals.
SUBMITTER: Cao L
PROVIDER: S-EPMC7222481 | biostudies-literature | 2020 May
REPOSITORIES: biostudies-literature
ACCESS DATA