Transcriptome analysis of Catarina scallop (Argopecten ventricosus) juveniles treated with highly-diluted immunomodulatory compounds reveals activation of non-self-recognition system.
Ontology highlight
ABSTRACT: Marine bivalve hatchery productivity is continuously challenged by apparition and propagation of new diseases, mainly those related to vibriosis. Disinfectants and antibiotics are frequently overused to prevent pathogen presence, generating a potential negative impact on the environment. Recently, the use of highly diluted compounds with immunostimulant properties in marine organisms has been trailed successfully to activate the self-protection mechanisms of marine bivalves. Despite their potential as immunostimulants, little is known about their way of action. To understand their effect, a comparative transcriptomic analysis was performed with Argopecten ventricosus juveniles. The experimental design consisted of four treatments formulated from pathogenic Vibrio lysates at two dilutions: [(T1) Vibrio parahaemolyticus and Vibrio alginolyticus 1D; (T2) V. parahaemolyticus and V. alginolyticus 7C]; minerals [(T3) PhA+SiT 7C], scorpion venom [(T4) ViT 31C]; and one control (C1) hydro-alcoholic solution (ethanol 1%). The RNA sequencing (RNAseq) analysis showed a higher modulation of differentially expressed genes (DEG) in mantle tissue compared to gill tissue. The scallops that showed a higher number of DEG related to immune response in mantle tissue corresponded to T1 (V. parahaemolyticus and V. alginolyticus lysate) and T3 (Silicea terra® - Phosphoric acid®). The transcriptome analysis allowed understanding some interactions between A. ventricosus juveniles and highly-diluted treatments.
SUBMITTER: Lopez-Carvallo JA
PROVIDER: S-EPMC7224555 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
ACCESS DATA