Unknown

Dataset Information

0

CRISPR/Cas9-Mediated Genome Editing Reveals Oosp Family Genes are Dispensable for Female Fertility in Mice.


ABSTRACT: There are over 200 genes that are predicted to be solely expressed in the oocyte and ovary, and thousands more that have expression patterns in the female reproductive tract. Unfortunately, many of their physiological functions, such as their roles in oogenesis or fertilization, have yet to be elucidated. Previous knockout (KO) mice studies have proven that many of the genes that were once thought to be essential for fertility are dispensable in vivo. Therefore, it is extremely important to confirm the roles of all genes before spending immense time studying them in vitro. To do this, our laboratory analyzes the functions of ovary and oocyte-enriched genes in vivo through generating CRISPR/Cas9 KO mice and examining their fertility. In this study, we have knocked out three Oosp family genes (Oosp1, Oosp2, and Oosp3) that have expression patterns linked to the female reproductive system and found that the triple KO (TKO) mutant mice generated exhibited decreased prolificacy but were not infertile; thus, these genes may potentially be dispensable for fertility. We also generated Cd160 and Egfl6 KO mice and found these genes are individually dispensable for female fertility. KO mice with no phenotypic data are seldom published, but we believe that this information must be shared to prevent unnecessary experimentation by other laboratories.

SUBMITTER: Abbasi F 

PROVIDER: S-EPMC7226750 | biostudies-literature | 2020 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

CRISPR/Cas9-Mediated Genome Editing Reveals <i>Oosp</i> Family Genes are Dispensable for Female Fertility in Mice.

Abbasi Ferheen F   Kodani Mayo M   Emori Chihiro C   Kiyozumi Daiji D   Mori Masashi M   Fujihara Yoshitaka Y   Ikawa Masahito M  

Cells 20200328 4


There are over 200 genes that are predicted to be solely expressed in the oocyte and ovary, and thousands more that have expression patterns in the female reproductive tract. Unfortunately, many of their physiological functions, such as their roles in oogenesis or fertilization, have yet to be elucidated. Previous knockout (KO) mice studies have proven that many of the genes that were once thought to be essential for fertility are dispensable in vivo. Therefore, it is extremely important to conf  ...[more]

Similar Datasets

| S-EPMC6735960 | biostudies-literature
| S-EPMC4492369 | biostudies-literature
| S-EPMC5482879 | biostudies-other
| S-EPMC5940154 | biostudies-literature
| S-EPMC7357425 | biostudies-literature
| S-EPMC4513079 | biostudies-literature
| S-EPMC9207553 | biostudies-literature
| S-EPMC4398027 | biostudies-literature
| S-EPMC4987700 | biostudies-other
| S-EPMC4417674 | biostudies-literature