Unknown

Dataset Information

0

A Quantitative Ultrasound-Based Multi-Parameter Classifier for Breast Masses.


ABSTRACT: This manuscript reports preliminary results obtained by combining estimates of two or three (among seven) quantitative ultrasound (QUS) parameters in a model-free, multi-parameter classifier to differentiate breast carcinomas from fibroadenomas (the most common benign solid tumor). Forty-three patients scheduled for core biopsy of a suspicious breast mass were recruited. Radiofrequency echo signal data were acquired using clinical breast ultrasound systems equipped with linear array transducers. The reference phantom method was used to obtain system-independent estimates of the specific attenuation (ATT), the average backscatter coefficients, the effective scatterer diameter (ESD) and an effective scatterer diameter heterogeneity index (ESDHI) over regions of interest within each mass. In addition, the envelope amplitude signal-to-noise ratio (SNR), the Nakagami shape parameter, m, and the maximum collapsed average (maxCA) of the generalized spectrum were also computed. Classification was performed using the minimum Mahalanobis distance to the centroids of the training classes and tested against biopsy results. Classification performance was evaluated with the area under the receiver operating characteristic (ROC) curve. The best performance with a two-parameter classifier used the ESD and ESDHI and resulted in an area under the ROC curve of 0.98 (95% confidence interval [CI]: 0.95-1.00). Classification performance improved with three parameters (ATT, ESD and ESDHI) yielding an area under the ROC curve of 0.999 (0.995-1.000). These results suggest that system-independent QUS parameters, when combined in a model-free classifier, are a promising tool to characterize breast tumors. A larger study is needed to further test this idea.

SUBMITTER: Nasief HG 

PROVIDER: S-EPMC7230148 | biostudies-literature | 2019 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Quantitative Ultrasound-Based Multi-Parameter Classifier for Breast Masses.

Nasief Haidy G HG   Rosado-Mendez Ivan M IM   Zagzebski James A JA   Hall Timothy J TJ  

Ultrasound in medicine & biology 20190426 7


This manuscript reports preliminary results obtained by combining estimates of two or three (among seven) quantitative ultrasound (QUS) parameters in a model-free, multi-parameter classifier to differentiate breast carcinomas from fibroadenomas (the most common benign solid tumor). Forty-three patients scheduled for core biopsy of a suspicious breast mass were recruited. Radiofrequency echo signal data were acquired using clinical breast ultrasound systems equipped with linear array transducers.  ...[more]

Similar Datasets

| S-EPMC10498215 | biostudies-literature
| S-EPMC7606763 | biostudies-literature
| S-EPMC10585530 | biostudies-literature
| S-EPMC7750476 | biostudies-literature
| S-EPMC5463197 | biostudies-other
| S-EPMC5627468 | biostudies-literature
| S-EPMC4694597 | biostudies-literature
| S-EPMC5882047 | biostudies-literature
| S-EPMC5583340 | biostudies-literature
| S-EPMC9780074 | biostudies-literature