Unknown

Dataset Information

0

Unveiling the Hidden Rules of Spherical Viruses Using Point Arrays.


ABSTRACT: Since its introduction, the Triangulation number has been the most successful and ubiquitous scheme for classifying spherical viruses. However, despite its many successes, it fails to describe the relative angular orientations of proteins, as well as their radial mass distribution within the capsid. It also fails to provide any critical insight into sites of stability, modifications or possible mutations. We show how classifying spherical viruses using icosahedral point arrays, introduced by Keef and Twarock, unveils new geometric rules and constraints for understanding virus stability and key locations for exterior and interior modifications. We present a modified fitness measure which classifies viruses in an unambiguous and rigorous manner, irrespective of local surface chemistry, steric hinderance, solvent accessibility or Triangulation number. We then use these point arrays to explain the immutable surface loops of bacteriophage MS2, the relative reactivity of surface lysine residues in CPMV and the non-quasi-equivalent flexibility of the HBV dimers. We then explain how point arrays can be used as a predictive tool for site-directed modifications of capsids. This success builds on our previous work showing that viruses place their protruding features along the great circles of the asymmetric unit, demonstrating that viruses indeed adhere to these geometric constraints.

SUBMITTER: Wilson DP 

PROVIDER: S-EPMC7232142 | biostudies-literature | 2020 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Unveiling the Hidden Rules of Spherical Viruses Using Point Arrays.

Wilson David P DP  

Viruses 20200420 4


Since its introduction, the Triangulation number has been the most successful and ubiquitous scheme for classifying spherical viruses. However, despite its many successes, it fails to describe the relative angular orientations of proteins, as well as their radial mass distribution within the capsid. It also fails to provide any critical insight into sites of stability, modifications or possible mutations. We show how classifying spherical viruses using icosahedral point arrays, introduced by Kee  ...[more]

Similar Datasets

| S-EPMC9068781 | biostudies-literature
| S-EPMC7764520 | biostudies-literature
| S-EPMC6733943 | biostudies-literature
| S-EPMC4999832 | biostudies-other
| S-EPMC3476481 | biostudies-literature
| S-EPMC2710854 | biostudies-literature
| S-EPMC4359031 | biostudies-literature
| S-EPMC3189341 | biostudies-literature
| S-EPMC4508583 | biostudies-literature
| S-EPMC5051729 | biostudies-literature