Project description:To investigate the effect of mechanical ventilation and mechanical ventilationon with PEEP application on diaphragmatic dysfunction, we established a model of mechanical ventilation on New Zealand rabbit, in which rabbits in the experimental group were ventilated with/without PEEP application for 48 hours continuously
Project description:During one-lung ventilation (OLV), titrating the positive end-expiratory pressure (PEEP) to target a low driving pressure (∆P) could reduce postoperative pulmonary complications. However, it is unclear how to conduct PEEP titration: by stepwise increase starting from zero PEEP (PEEPINCREMENTAL) or by stepwise decrease after a lung recruiting manoeuvre (PEEPDECREMENTAL). In this randomized trial, we compared the physiological effects of these two PEEP titration strategies on respiratory mechanics, ventilation/perfusion mismatch and gas exchange. Patients undergoing video-assisted thoracoscopic surgery in OLV were randomly assigned to a PEEPINCREMENTAL or PEEPDECREMENTAL strategy to match the lowest ∆P. In the PEEPINCREMENTAL group, PEEP was stepwise titrated from ZEEP up to 16 cm H2O, whereas in the PEEPDECREMENTAL group PEEP was decrementally titrated, starting from 16 cm H2O, immediately after a lung recruiting manoeuvre. Respiratory mechanics, ventilation/perfusion mismatch and blood gas analyses were recorded at baseline, after PEEP titration and at the end of surgery. Sixty patients were included in the study. After PEEP titration, shunt decreased similarly in both groups, from 50 [39-55]% to 35 [28-42]% in the PEEPINCREMENTAL and from 45 [37-58]% to 33 [25-45]% in the PEEPDECREMENTAL group (both p < 0.001 vs baseline). The resulting ∆P, however, was lower in the PEEPDECREMENTAL than in the PEEPINCREMENTAL group (8 [7-11] vs 10 [9-11] cm H2O; p = 0.03). In the PEEPDECREMENTAL group the PaO2/ FIO2 ratio increased significantly after intervention (from 140 [99-176] to 186 [152-243], p < 0.001). Both the PEEPINCREMENTAL and the PEEPDECREMENTAL strategies were able to decrease intraoperative shunt, but only PEEPDECREMENTAL improved oxygenation and lowered intraoperative ΔP.Clinical trial number NCT03635281; August 2018; "retrospectively registered".
Project description:OBJECTIVE:Reinstitution of mechanical ventilation (MV) for tracheostomized patients after successful weaning may occur as the care setting changes from critical care to general care. We aimed to investigate the occurrence, consequence and associated factors of MV reinstitution. METHODS:We analyzed the clinical data and physiological measurements of tracheostomized patients with prolonged MV discharged from the weaning unit to general wards after successful weaning to compare between those with and without in-hospital MV reinstitution within 60 days. RESULTS:Of 454 patients successfully weaned, 116 (25.6%) reinstituted MV at general wards within 60 days; at hospital discharge, 42 (36.2%) of them were eventually liberated from MV, 51 (44.0%) remained MV dependent, and 33 (28.4%) died. Of the 338 patients without reinstitution within 60 days, only 3 (0.9%) were later reinstituted with MV before discharge (on day 67, 89 and 136 at general wards, respectively), and 322 (95.2%) were successfully weaned again at discharge, while 13 (3.8%) died. Patients with MV reinstitution had a significantly lower level of maximal expiratory pressure (PEmax) before unassisted breathing trial compared to those without reinstitution. Multivariable Cox regression analysis showed fever at RCC discharge (hazard ratio [HR] 14.00, 95% confidence interval [CI] 3.2-61.9) chronic obstructive pulmonary disease (HR 2.37, 95% CI 1.34-4.18), renal replacement therapy at the ICU (HR 2.29, 95% CI 1.50-3.49) and extubation failure before tracheostomy (HR 1.76, 95% CI 1.18-2.63) were associated with increased risks of reinstitution, while PEmax > 30 cmH2O (HR 0.51, 95% CI 0.35-0.76) was associated with a decreased risk of reinstitution. CONCLUSIONS:The reinstitution of MV at the general ward is significant, with poor outcomes. The PEmax measured before unassisted breathing trial was significantly associated with the risk of reinstituting MV at the general wards.
Project description:In spite of intensive investigations, the role of spontaneous breathing (SB) activity in ARDS has not been well defined yet and little has been known about the different contribution of inspiratory or expiratory muscles activities during mechanical ventilation in patients with ARDS. In present study, oleic acid-induced beagle dogs' ARDS models were employed and ventilated with the same level of mean airway pressure. Respiratory mechanics, lung volume, gas exchange and inflammatory cytokines were measured during mechanical ventilation, and lung injury was determined histologically. As a result, for the comparable ventilator setting, preserved inspiratory muscles activity groups resulted in higher end-expiratory lung volume (EELV) and oxygenation index. In addition, less lung damage scores and lower levels of system inflammatory cytokines were revealed after 8?h of ventilation. In comparison, preserved expiratory muscles activity groups resulted in lower EELV and oxygenation index. Moreover, higher lung injury scores and inflammatory cytokines levels were observed after 8?h of ventilation. Our findings suggest that the activity of inspiratory muscles has beneficial effects, whereas that of expiratory muscles exerts adverse effects during mechanical ventilation in ARDS animal model. Therefore, for mechanically ventilated patients with ARDS, the demands for deep sedation or paralysis might be replaced by the strategy of expiratory muscles paralysis through epidural anesthesia.
Project description:The timing of extracorporeal membrane oxygenation (ECMO) initiation and its outcome in the management of respiratory and cardiac failure have received considerable attention, but very little attention has been given to mechanical ventilation during ECMO. Mechanical ventilation settings in non-ECMO studies have been shown to have an effect on survival and may also have contributed to a treatment effect in ECMO trials. Protective lung ventilation strategies established for non-ECMO-supported respiratory failure patients may not be optimal for more severe forms of respiratory failure requiring ECMO support. The influence of positive end-expiratory pressure on the reduction of the left ventricular compliance may be a matter of concern for patients receiving ECMO support for cardiac failure. The objectives of this review were to describe potential mechanisms for lung injury during ECMO for respiratory or cardiac failure, to assess the possible benefits from the use of ultra-protective lung ventilation strategies and to review published guidelines and expert opinions available on mechanical ventilation-specific management of patients requiring ECMO, including mode and ventilator settings. Articles were identified through a detailed search of PubMed, Ovid, Cochrane databases and Google Scholar. Additional references were retrieved from the selected studies. Growing evidence suggests that mechanical ventilation settings are important in ECMO patients to minimize further lung damage and improve outcomes. An ultra-protective ventilation strategy may be optimal for mechanical ventilation during ECMO for respiratory failure. The effects of airway pressure on right and left ventricular afterload should be considered during venoarterial ECMO support of cardiac failure. Future studies are needed to better understand the potential impact of invasive mechanical ventilation modes and settings on outcomes.
Project description:The extent of ventilator-induced lung injury may be related to the intensity of mechanical ventilation--expressed as mechanical power. In the present study, we investigated whether there is a safe threshold, below which lung damage is absent. Three groups of six healthy pigs (29.5 ± 2.5 kg) were ventilated prone for 48 h at mechanical power of 3, 7, or 12 J/min. Strain never exceeded 1.0. PEEP was set at 4 cmH2 O. Lung volumes were measured every 12 h; respiratory, hemodynamics, and gas exchange variables every 6. End-experiment histological findings were compared with a control group of eight pigs which did not undergo mechanical ventilation. Functional residual capacity decreased by 10.4% ± 10.6% and 8.1% ± 12.1% in the 7 J and 12 J groups (p = 0.017, p < 0.001) but not in the 3 J group (+1.7% ± 17.7%, p = 0.941). In 3 J group, lung elastance, PaO2 and PaCO2 were worse compared to 7 J and 12 J groups (all p < 0.001), due to lower ventilation-perfusion ratio (0.54 ± 0.13, 1.00 ± 0.25, 1.78 ± 0.36 respectively, p < 0.001). The lung weight was lower (p < 0.001) in the controls (6.56 ± 0.90 g/kg) compared to 3, 7, and 12 J groups (12.9 ± 3.0, 16.5 ± 2.9, and 15.0 ± 4.1 g/kg, respectively). The wet-to-dry ratio was 5.38 ± 0.26 in controls, 5.73 ± 0.52 in 3 J, 5.99 ± 0.38 in 7 J, and 6.13 ± 0.59 in 12 J group (p = 0.03). Vascular congestion was more extensive in the 7 J and 12 J compared to 3 J and control groups. Mechanical ventilation (with anesthesia/paralysis) increase lung weight, and worsen lung histology, regardless of the mechanical power. Ventilating at 3 J/min led to better anatomical variables than at 7 and 12 J/min but worsened the physiological values.
Project description:BackgroundMany studies explored the impact of ventilation during cardiopulmonary bypass (CPB) period with conflicting results. Functional residual capacity or End Expiratory Lung Volume (EELV) may be disturbed after cardiac surgery but the specific effects of CPB have not been studied. Our objective was to compare the effect of two ventilation strategies during CPB on EELV.MethodsObservational single center study in a tertiary teaching hospital. Adult patients undergoing on-pump cardiac surgery by sternotomy were included. Maintenance of ventilation during CPB was left to the discretion of the medical team, with division between "ventilated" and "non-ventilated" groups afterwards. Iterative intra and postoperative measurements of EELV were carried out by nitrogen washin-washout technique. Main endpoint was EELV at the end of surgery. Secondary endpoints were EELV one hour after ICU admission, PaO2/FiO2 ratio, driving pressure, duration of mechanical ventilation and post-operative pulmonary complications.ResultsForty consecutive patients were included, 20 in each group. EELV was not significantly different between the ventilated versus non-ventilated groups at the end of surgery (1796 ± 586 mL vs. 1844 ± 524 mL, p = 1) and one hour after ICU admission (2095 ± 562 vs. 2045 ± 476 mL, p = 1). No significant difference between the two groups was observed on PaO2/FiO2 ratio (end of surgery: 339 ± 149 vs. 304 ± 131, p = 0.8; one hour after ICU: 324 ± 115 vs. 329 ± 124, p = 1), driving pressure (end of surgery: 7 ± 1 vs. 8 ± 1 cmH2O, p = 0.3; one hour after ICU: 9 ± 3 vs. 9 ± 3 cmH2O), duration of mechanical ventilation (5.5 ± 4.8 vs 8.2 ± 10.0 h, p = 0.5), need postoperative respiratory support (2 vs. 1, p = 1), occurrence of pneumopathy (2 vs. 0, p = 0.5) and radiographic atelectasis (7 vs. 8, p = 1).ConclusionNo significant difference was observed in EELV after cardiac surgery between not ventilated and ventilated patients during CPB.
Project description:Weaning patients from mechanical ventilation (MV) is a critical and resource intensive process in the Intensive Care Unit (ICU) that impacts patient outcomes and healthcare expenses. Weaning methods vary widely among providers. Prolonged MV is associated with adverse events and higher healthcare expenses. Predicting weaning readiness is a non-trivial process in which the positive end-expiratory pressure (PEEP), a crucial component of MV, has potential to be indicative but has not yet been used as the target. We aimed to predict successful weaning from mechanical ventilation by targeting changes in the PEEP-level using a supervised machine learning model. This retrospective study included 12,153 mechanically ventilated patients from Medical Information Mart for Intensive Care (MIMIC-IV) and eICU collaborative research database (eICU-CRD). Two machine learning models (Extreme Gradient Boosting and Logistic Regression) were developed using a continuous PEEP reduction as target. The data is splitted into 80% as training set and 20% as test set. The model's predictive performance was reported using 95% confidence interval (CI), based on evaluation metrics such as area under the receiver operating characteristic (AUROC), area under the precision-recall curve (AUPRC), F1-Score, Recall, positive predictive value (PPV), and negative predictive value (NPV). The model's descriptive performance was reported as the variable ranking using SHAP (SHapley Additive exPlanations) algorithm. The best model achieved an AUROC of 0.84 (95% CI 0.83-0.85) and an AUPRC of 0.69 (95% CI 0.67-0.70) in predicting successful weaning based on the PEEP reduction. The model demonstrated a Recall of 0.85 (95% CI 0.84-0.86), F1-score of 0.86 (95% CI 0.85-0.87), PPV of 0.87 (95% CI 0.86-0.88), and NPV of 0.64 (95% CI 0.63-0.66). Most of the variables that SHAP algorithm ranked to be important correspond with clinical intuition, such as duration of MV, oxygen saturation (SaO2), PEEP, and Glasgow Coma Score (GCS) components. This study demonstrates the potential application of machine learning in predicting successful weaning from MV based on continuous PEEP reduction. The model's high PPV and moderate NPV suggest that it could be a useful tool to assist clinicians in making decisions regarding ventilator management.
Project description:This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2020. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2020. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901.
Project description:BACKGROUND:Volume-controlled ventilation has been suggested to optimize lung deposition during nebulization although promoting spontaneous ventilation is targeted to avoid ventilator-induced diaphragmatic dysfunction. Comparing topographic aerosol lung deposition during volume-controlled ventilation and spontaneous ventilation in pressure support has never been performed. The aim of this study was to compare lung deposition of a radiolabeled aerosol generated with a vibrating-mesh nebulizer during invasive mechanical ventilation, with two modes: pressure support ventilation and volume-controlled ventilation. METHODS:Seventeen postoperative neurosurgery patients without pulmonary disease were randomly ventilated in pressure support or volume-controlled ventilation. Diethylenetriaminepentaacetic acid labeled with technetium-99m (2 mCi/3 mL) was administrated using a vibrating-mesh nebulizer (Aerogen Solo(®), provided by Aerogen Ltd, Galway, Ireland) connected to the endotracheal tube. Pulmonary and extrapulmonary particles deposition was analyzed using planar scintigraphy. RESULTS:Lung deposition was 10.5 ± 3.0 and 15.1 ± 5.0 % of the nominal dose during pressure support and volume-controlled ventilation, respectively (p < 0.05). Higher endotracheal tube and tracheal deposition was observed during pressure support ventilation (27.4 ± 6.6 vs. 20.7 ± 6.0 %, p < 0.05). A similar penetration index was observed for the right (p = 0.210) and the left lung (p = 0.211) with both ventilation modes. A high intersubject variability of lung deposition was observed with both modes regarding lung doses, aerosol penetration and distribution between the right and the left lung. CONCLUSIONS:In the specific conditions of the study, volume-controlled ventilation was associated with higher lung deposition of nebulized particles as compared to pressure support ventilation. The clinical benefit of this effect warrants further studies. Clinical trial registration NCT01879488.