Unknown

Dataset Information

0

Accurate deep neural network inference using computational phase-change memory.


ABSTRACT: In-memory computing using resistive memory devices is a promising non-von Neumann approach for making energy-efficient deep learning inference hardware. However, due to device variability and noise, the network needs to be trained in a specific way so that transferring the digitally trained weights to the analog resistive memory devices will not result in significant loss of accuracy. Here, we introduce a methodology to train ResNet-type convolutional neural networks that results in no appreciable accuracy loss when transferring weights to phase-change memory (PCM) devices. We also propose a compensation technique that exploits the batch normalization parameters to improve the accuracy retention over time. We achieve a classification accuracy of 93.7% on CIFAR-10 and a top-1 accuracy of 71.6% on ImageNet benchmarks after mapping the trained weights to PCM. Our hardware results on CIFAR-10 with ResNet-32 demonstrate an accuracy above 93.5% retained over a one-day period, where each of the 361,722 synaptic weights is programmed on just two PCM devices organized in a differential configuration.

SUBMITTER: Joshi V 

PROVIDER: S-EPMC7235046 | biostudies-literature | 2020 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Accurate deep neural network inference using computational phase-change memory.

Joshi Vinay V   Le Gallo Manuel M   Haefeli Simon S   Boybat Irem I   Nandakumar S R SR   Piveteau Christophe C   Dazzi Martino M   Rajendran Bipin B   Sebastian Abu A   Eleftheriou Evangelos E  

Nature communications 20200518 1


In-memory computing using resistive memory devices is a promising non-von Neumann approach for making energy-efficient deep learning inference hardware. However, due to device variability and noise, the network needs to be trained in a specific way so that transferring the digitally trained weights to the analog resistive memory devices will not result in significant loss of accuracy. Here, we introduce a methodology to train ResNet-type convolutional neural networks that results in no appreciab  ...[more]

Similar Datasets

| S-EPMC5653661 | biostudies-literature
| S-EPMC7979803 | biostudies-literature
| S-EPMC7725956 | biostudies-literature
| S-EPMC10625985 | biostudies-literature
| S-EPMC9487135 | biostudies-literature
| S-EPMC6909530 | biostudies-literature
| S-EPMC6955367 | biostudies-literature
| S-EPMC8204903 | biostudies-literature
| S-EPMC10082608 | biostudies-literature
| S-EPMC10763955 | biostudies-literature