Role and mechanism of angiotensin-converting enzyme 2 in acute lung injury in coronavirus disease 2019.
Ontology highlight
ABSTRACT: Coronavirus disease 2019 is a major threat to public health globally. Though its pathogenesis has not been fully elucidated, angiotensin-converting enzyme 2 (ACE2) has been recently identified as a receptor for the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into the cell. Here, we aimed to clarify the potential role of ACE2 in SARS-CoV-2-induced acute lung injury and its underlying mechanism. As a receptor for coronavirus, ACE2 mediates the entry of SARS-CoV-2 into cells in a similar way as for severe acute respiratory syndrome coronavirus (SARS-CoV). The high binding affinity of SARS-CoV-2 to ACE2 correlates with its efficient spread among humans. On the other hand, ACE2 negatively regulates the renin-angiotensin-aldosterone system (RAAS) primarily by converting angiotensin II to angiotensin 1-7, which exerts a beneficial effect on coronavirus-induced acute lung injury. Human recombinant ACE2 has been considered as a potential therapy for SARS-CoV-2 by blocking virus entry and redressing the imbalance of RAAS in SARS-CoV-2 infection. The level of ACE2 expression can be upregulated by treatment with an ACE inhibitor (ACEI) or angiotensin ? type 1 receptor blocker (ARB). To date, no evidence shows that ACEIs or ARBs increase the susceptibility and mortality of patients infected with SARS-CoV-2, and hence, it is not advisable to discontinue such drugs in patients with cardiovascular disease.
SUBMITTER: Liu MY
PROVIDER: S-EPMC7236734 | biostudies-literature | 2020 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA