Unknown

Dataset Information

0

Mapping a double flower phenotype-associated gene DcAP2L in Dianthus chinensis.


ABSTRACT: The double flower is a highly important breeding trait that affects the ornamental value in many flowering plants. To get a better understanding of the genetic mechanism of double flower formation in Dianthus chinensis, we have constructed a high-density genetic map using 140 F2 progenies derived from a cross between a single flower genotype and a double flower genotype. The linkage map was constructed using double-digest restriction site-associated DNA sequencing (ddRAD-seq) with 2353 single nucleotide polymorphisms (SNPs). Quantitative trait locus (QTL) mapping analysis was conducted for 12 horticultural traits, and major QTLs were identified for nine of the 12 traits. Among them, two major QTLs accounted for 20.7% and 78.1% of the total petal number variation, respectively. Bulked segregant RNA-seq (BSR-seq) was performed to search accurately for candidate genes associated with the double flower trait. Integrative analysis of QTL mapping and BSR-seq analysis using the reference genome of Dianthus caryophyllus suggested that an SNP mutation in the miR172 cleavage site of the A-class flower organ identity gene APETALA2 (DcAP2L) is responsible for double flower formation in Dianthus through regulating the expression of DcAG genes.

SUBMITTER: Wang Q 

PROVIDER: S-EPMC7242084 | biostudies-literature | 2020 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mapping a double flower phenotype-associated gene DcAP2L in Dianthus chinensis.

Wang Qijian Q   Zhang Xiaoni X   Lin Shengnan S   Yang Shaozong S   Yan Xiuli X   Bendahmane Mohammed M   Bao Manzhu M   Fu Xiaopeng X  

Journal of experimental botany 20200301 6


The double flower is a highly important breeding trait that affects the ornamental value in many flowering plants. To get a better understanding of the genetic mechanism of double flower formation in Dianthus chinensis, we have constructed a high-density genetic map using 140 F2 progenies derived from a cross between a single flower genotype and a double flower genotype. The linkage map was constructed using double-digest restriction site-associated DNA sequencing (ddRAD-seq) with 2353 single nu  ...[more]

Similar Datasets

| S-EPMC7020439 | biostudies-literature
| S-EPMC4941542 | biostudies-literature
| PRJNA633935 | ENA
| PRJNA478867 | ENA
| PRJNA533533 | ENA
| S-EPMC8659278 | biostudies-literature
| S-EPMC6110776 | biostudies-literature
| S-EPMC3862579 | biostudies-literature
| S-EPMC7872571 | biostudies-literature
| S-EPMC7548305 | biostudies-literature