Project description:According to a Prognoscan database, upregulation of Bruton's tyrosine kinase (Btk) is associated with low overall survival in ovarian cancer patients. We found that spheroids-forming ovarian cancer cell, which highly expressed cancer stem-like cell (CSC) markers and Btk, were cisplatin resistant. We next treated CSCs and non-CSCs by a combination of ibrutinib and cisplatin. We found that chemoresistance was dependent on Btk and JAK2/STAT3, which maintained CSC by inducing Sox-2 and prosurvival genes. We suggest that addition of ibrutinib to cisplatin may improve treatment outcome in ovarian cancer.
Project description:The coronavirus disease 2019 (COVID-19) is an on-going pandemic caused by the SARS-coronavirus-2 (SARS-CoV-2) which targets the respiratory system of humans. The published data show that children, unlike adults, are less susceptible to contracting the disease. This article aims at understanding why children constitute a minor group among hospitalized COVID-19 patients. Here, we hypothesize that the measles, mumps, and rubella (MMR) vaccine could provide a broad neutralizing antibody against numbers of diseases, including COVID-19. Our hypothesis is based on the 30 amino acid sequence homology between the SARS-CoV-2 Spike (S) glycoprotein (PDB: 6VSB) of both the measles virus fusion (F1) glycoprotein (PDB: 5YXW_B) and the rubella virus envelope (E1) glycoprotein (PDB: 4ADG_A). Computational analysis of the homologous region detected the sequence as antigenic epitopes in both measles and rubella. Therefore, we believe that humoral immunity, created through the MMR vaccination, provides children with advantageous protection against COVID-19 as well, however, an experimental analysis is required.
Project description:Mantle cell lymphoma (MCL) is an aggressive subtype of non-Hodgkin's lymphoma and one of the most challenging blood cancers to combat due to frequent relapse after treatment. Here, we developed the first-in-class BTK/PI3K/BRD4 axis inhibitor SRX3262, which simultaneously blocks three interrelated MCL driver pathways - BTK, PI3K-AKT-mTOR and MYC. SRX3262 concomitantly binds to BTK, PI3K, and BRD4, exhibits potent in vitro and in vivo activity against MCL, and overcomes the Ibrutinib resistance resulting from the BTK-C481S mutation. Our results reveal that SRX3262 inhibits IgM-induced BTK and AKT phosphorylation and abrogates binding of BRD4 to MYC loci. SRX3262 promotes c-MYC destabilization, induces cell cycle arrest and apoptosis, and shows antitumor activity in in vivo xenograft models. Together, our study provides mechanistic insights and rationale for the use of the triple BTK/PI3K/BRD4 activity inhibitors as a new approach to treat MCL.
Project description:The worldwide struggle against the coronavirus disease 2019 (COVID-19) as a public health crisis continues to sweep across the globe. Up to now, effective antiviral treatment against COVID-19 is not available. Therefore, throughout virus infections, a thorough clarification of the virus-host immune system interactions will be most probably helpful to encounter these challenges. Emerging evidence suggests that just like SARS and MERS, COVID-19 primarily suppresses the innate immune system, enabling its stable propagation during the early stage of infection. Consequently, proinflammatory cytokines and chemokines have been increasing during infection progression associated with severe lung pathology. It is imperative to consider hyper inflammation in vaccine designing, as vaccine-induced immune responses must have a protective role against infection without leading to immunopathology. Among the front-line responders to viral infections, Natural Killer (NK) cells have immense therapeutic potential, forming a bridge between innate and adaptive responses. A subset of NK cells exhibits putatively increased effector functions against viruses following pathogen-specific and immunization. Memory NK cells have higher cytotoxicity and effector activity, compared with the conventional NK cells. As a pioneering strategy, prompt accumulation and long-term maintenance of these memory NK cells could be an efficacious viral treatment. According to the high prevalence of human cytomegalovirus (HCMV) infection in the world, it remains to be determined whether HCMV adaptive NK cells could play a protective role against this new emerging virus. In addition, the new adaptive-like KIR+NKG2C+ NK cell subset (the adaptive-like lung tissue residue [tr]NK cell) in the context of the respiratory infection at this site could specifically exhibit the expansion upon COVID-19. Another aspect of NK cells we should note, utilizing modified NK cells such as allogeneic off-the-shelf CAR-NK cells as a state-of-the-art strategy for the treatment of COVID-19. In this line, we speculate introducing NKG2C into chimeric antigen receptors in NK cells might be a potential approach in future viral immunotherapy for emerging viruses. In this contribution, we will briefly discuss the current status and future perspective of NK cells, which provide to successfully exploit NK cell-mediated antiviral activity that may offer important new tools in COVID-19 treatment.
Project description:BackgroundStreptococcus pneumoniae is a major causative agent in community-acquired pneumonia and sepsis. Overwhelming lung inflammation during pneumococcal pneumonia may hamper lung function. Ibrutinib is an irreversible inhibitor of Bruton's tyrosine kinase (Btk), a key signaling protein controlling the activation of various immune cells, including macrophages and neutrophils. The aim of this study was to determine whether ibrutinib treatment ameliorates acute lung inflammation during pneumococcal pneumonia.MethodsMice were treated orally with ibrutinib and the effect on acute pulmonary inflammation elicited by the gram-positive bacterial cell wall component lipoteichoic acid (LTA) and during ceftriaxone-treated pneumococcal pneumonia was assessed.ResultsTreatment with ibrutinib prior to and after intranasal LTA instillation reduced alveolar macrophage activation, neutrophil influx, cytokine release and plasma leakage into the lung. Postponed treatment with ibrutinib supplementing antibiotic therapy during ongoing pneumococcal pneumonia did not impair bacterial killing in lung, blood and spleen. In this setting, ibrutinib reduced alveolar macrophage and systemic neutrophil activation and substantially diminished further monocyte and neutrophil influx in the lung. In vitro, ibrutinib inhibited macrophage TNF secretion and neutrophil activation upon LTA and pneumococcal stimulation.ConclusionsTaken together, these data indicate that the Btk inhibitor ibrutinib reduces inflammatory myeloid cell responses during acute pulmonary inflammation evoked by LTA and antibiotic-treated pneumococcal pneumonia and suggest that ibrutinib has the potential to inhibit ongoing lung inflammation in an acute infectious setting.
Project description:Age-related macular degeneration (AMD) is the leading cause of vision loss among the elderly. The progression of AMD is closely related to oxidative stress in the retinal pigment epithelium (RPE). Here, a series of chitosan oligosaccharides (COSs) and N-acetylated derivatives (NACOSs) were prepared, and their protective effects on an acrolein-induced oxidative stress model of ARPE-19 were explored using the MTT assay. The results showed that COSs and NACOs alleviated APRE-19 cell damage induced by acrolein in a concentration-dependent manner. Among these, chitopentaose (COS-5) and its N-acetylated derivative (N-5) showed the best protective activity. Pretreatment with COS-5 or N-5 could reduce intracellular and mitochondrial reactive oxygen species (ROS) production induced by acrolein, increase mitochondrial membrane potential, GSH level, and the enzymatic activity of SOD and GSH-Px. Further study indicated that N-5 increased the level of nuclear Nrf2 and the expression of downstream antioxidant enzymes. This study revealed that COSs and NACOSs reduced the degeneration and apoptosis of retinal pigment epithelial cells by enhancing antioxidant capacity, suggesting that they have the potential to be developed into novel protective agents for AMD treatment and prevention.
Project description:An excess of calcium (Ca2+) influx into mitochondria during mitochondrial re-energization is one of the causes of myocardial cell death during ischemic/reperfusion injury. This overload of Ca2+ triggers the mitochondrial permeability transition pore (mPTP) opening which leads to programmed cell death. During the ischemic/reperfusion stage, the activated Ca2+/calmodulin-dependent protein kinase II (CaMKII) enzyme is responsible for Ca2+ influx. To reduce CaMKII-related cell death, sub-micron particles composed of poly(lactic-co-glycolic acid) (PLGA), loaded with a CaMKII inhibitor peptide were fabricated. The CaMKII inhibitor peptide-loaded (CIP) particles were coated with a mitochondria targeting moiety, triphenylphosphonium cation (TPP), which allowed the particles to accumulate and release the peptide inside mitochondria to inhibit CaMKII activity. The fluorescently labeled TPP-CIP was taken up by mitochondria and successfully reduced reactive oxygen species (ROS) caused by Isoprenaline (ISO) in a differentiated rat cardiomyocyte-like cell line. When cells were treated with TPP-CIP prior to ISO exposure, they maintained mitochondrial membrane potential. The TPP-CIP protected cells from ISO-induced ROS production and decreased mitochondrial membrane potential. Thus, TPP-CIP has the potential to be used in protection against ischemia/reperfusion injury.