Unknown

Dataset Information

0

Growth differentiation factor-11 supplementation improves survival and promotes recovery after ischemic stroke in aged mice.


ABSTRACT: Growth differentiation factor (GDF) 11 levels decline with aging. The age-related loss of GDF 11 has been implicated in the pathogenesis of a variety of age-related diseases. GDF11 supplementation reversed cardiac hypertrophy, bone loss, and pulmonary dysfunction in old mice, suggesting that GDF11 has a rejuvenating effect. Less is known about the potential of GDF11 to improve recovery after an acute injury, such as stroke, in aged mice. GDF11/8 levels were assessed in young and aged male mice and in postmortem human brain samples. Aged mice were subjected to a transient middle cerebral artery occlusion (MCAo). Five days after MCAo, mice received and bromodeoxyuridine / 5-Bromo-2'-deoxyuridine (BrdU) and either recombinant GDF11 or vehicle for five days and were assessed for recovery for one month following stroke. MRI was used to determine cerebrospinal fluid (CSF) volume, corpus callosum (CC) area, and brain atrophy at 30 days post-stroke. Immunohistochemistry was used to assess gliosis, neurogenesis, angiogenesis and synaptic density. Lower GDF11/8 levels were found with age in both mice and humans (p<0.05). GDF11 supplementation reduced mortality and improved sensorimotor deficits after stroke. Treatment also reduced brain atrophy and gliosis, increased angiogenesis, improved white matter integrity, and reduced inflammation after stroke. GDF11 may have a role in brain repair after ischemic injury.

SUBMITTER: Hudobenko J 

PROVIDER: S-EPMC7244081 | biostudies-literature | 2020 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Growth differentiation factor-11 supplementation improves survival and promotes recovery after ischemic stroke in aged mice.

Hudobenko Jacob J   Ganesh Bhanu Priya BP   Jiang Jianjun J   Mohan Eric C EC   Lee Songmi S   Sheth Sunil S   Morales Diego D   Zhu Liang L   Kofler Julia K JK   Pautler Robia G RG   McCullough Louise D LD   Chauhan Anjali A  

Aging 20200504 9


Growth differentiation factor (GDF) 11 levels decline with aging. The age-related loss of GDF 11 has been implicated in the pathogenesis of a variety of age-related diseases. GDF11 supplementation reversed cardiac hypertrophy, bone loss, and pulmonary dysfunction in old mice, suggesting that GDF11 has a rejuvenating effect. Less is known about the potential of GDF11 to improve recovery after an acute injury, such as stroke, in aged mice. GDF11/8 levels were assessed in young and aged male mice a  ...[more]

Similar Datasets

| S-EPMC4378896 | biostudies-literature
| S-EPMC6800638 | biostudies-literature
| S-EPMC5553701 | biostudies-literature
| S-EPMC5732157 | biostudies-literature
| S-EPMC10233761 | biostudies-literature
| S-EPMC7541066 | biostudies-literature
| S-EPMC4100192 | biostudies-literature
| S-EPMC5561313 | biostudies-other
| S-EPMC4854844 | biostudies-literature
| S-EPMC8135236 | biostudies-literature