Effects of support and reaction pressure for the synthesis of dimethyl ether over heteropolyacid catalysts.
Ontology highlight
ABSTRACT: Dimethyl ether (DME) is an advanced second-generation biofuel produced via methanol dehydration over acid catalysts such as ?-Al2O3, at temperatures above 240?°C and pressures above 10?bar. Heteropolyacids such as tungstosilicic acid (HSiW) are Brønsted acid catalysts with higher DME production rates than ?-Al2O3, especially at low temperatures (140-180?°C). In this work, we show that the performance of supported HSiW for the production of DME is strongly affected by the nature of the support. TiO2 and SiO2 supported HSiW display the highest DME production rates of ca. 50 mmolDME/h/gHSiW. Characterization of acid sites via 1H-NMR, NH3-isotherms and NH3-adsrobed DRIFT reveal that HSiW/X have Brønsted acid sites, HSiW/TiO2 showing more and stronger sites, being the most active catalyst. Methanol production increases with T until 200?°C where a rapid decay in methanol conversion is observed. This effect is not irreversible, and methanol conversion increases to ca. 90% by increasing reaction pressure to 10?bar, with DME being the only product detected at all reaction conditions studied in this work. The loss of catalytic activity with the increasing temperature and its increasing with reaction pressure accounts to the degree of contribution of the pseudo-liquid catalysis under the reaction conditions studied.
SUBMITTER: Peinado C
PROVIDER: S-EPMC7244519 | biostudies-literature | 2020 May
REPOSITORIES: biostudies-literature
ACCESS DATA