Ontology highlight
ABSTRACT: Objective
Deficits in ankle motor control has been identified as a significant contributor to impaired walking after stroke. Corticomotor excitability has been related to impaired upper limb motor control and poor recovery in stroke, however contributions to lower limb function are still unclear. This study used transcranial magnetic stimulation (TMS) to determine the influence of corticomotor characteristics on lower limb motor control in chronic stroke survivors.Methods
This retrospective study assessed 28 individuals with post stroke hemiparesis. Motor evoked potentials (MEP) measured from the paretic and non-paretic tibialis anterior (TA) muscles were used to calculate corticomotor excitability symmetry (CMEsym) and relative ipsilateral corticomotor excitability (ICE). Participants were assigned to MEP+ and MEP- groups depending on the presence (+) or absence (-) of MEPs. Ankle motor control was quantified by the ability of participants to track a sinusoidal target using dorsiflexion-plantarflexion movements of the paretic ankle and tracking error was calculated using root mean square error (RMSE).Results
Multiple linear regression model for all participants revealed only CMEsym and FMLE (p < 0.01) to significantly predict RMSE. In the MEP+ group, CMEsym significantly predicted RMSE (p = 0.03) while FMLE (p = 0.02) was a significant predictor for the MEP-.Conclusion
Our results indicate that CMEsym between the ipsilesional and contralesional hemispheres does not necessarily translate to better paretic ankle motor control in chronic stroke. Presence or absence of a MEP in the TA muscle did not affect the ankle tracking performance, however, it was noted that different strategies maybe used by those with and without a MEP.
SUBMITTER: Lim H
PROVIDER: S-EPMC7246021 | biostudies-literature |
REPOSITORIES: biostudies-literature