Functional Analysis of Differentially Expressed Acetylated Spermatozoal Proteins in Infertile Men with Unilateral and Bilateral Varicocele.
Ontology highlight
ABSTRACT: Sperm proteins undergo post-translational modifications, such as phosphorylation, acetylation, and ubiquitination, which in turn play a key role in determining their fertilizing ability. In the current study, we examined the sperm proteome of men with unilateral and bilateral varicocele to identify the key proteins affected by acetylation to gain an insight into the difference in the severity of affected sperm function in the latter. An LTQ-Orbitrap Elite hybrid mass spectrometer system was used to profile the sperm proteome in pooled unilateral and bilateral varicocele patients. Bioinformatics database and tools, such as UniProtKB, Ingenuity Pathway Analysis Software (IPA) and Metacore, were used to identify the differentially expressed proteins (DEPs) involved in the acetylation process. A total of 135 DEPs in the spermatozoa of unilateral and bilateral varicocele patients were found to be affected by acetylation. The majority of these DEPs found were regulated by key transcription factors such as androgen receptor, p53, and NRF2. Furthermore, the DEPs predicted to be affected by the acetylation process were associated with fertilization, acrosome reaction, mitochondrial dysfunction and oxidative stress. Aberrant expression of proteins and their differential acetylation process may affect the normal physiological functions of spermatozoa. Protein-protein interactions identified dysregulation of the proteasome complex in the bilateral varicocele group. Damage to the proteasome complex may result in aggregation of the misfolded proteins, which in turn increase sperm DNA damage and apoptosis in patients with bilateral varicocele.
SUBMITTER: Panner Selvam MK
PROVIDER: S-EPMC7246524 | biostudies-literature | 2020 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA