Project description:Natural progression of HIV-1 infection depends on genetic variation in the human major histocompatibility complex (MHC) class I locus, and the CD8+ T cell response is thought to be a primary mechanism of this effect. However, polymorphism within the MHC may also alter innate immune activity against human immunodeficiency virus type 1 (HIV-1) by changing interactions of human leukocyte antigen (HLA) class I molecules with leukocyte immunoglobulin-like receptors (LILR), a group of immunoregulatory receptors mainly expressed on myelomonocytic cells including dendritic cells (DCs). We used previously characterized HLA allotype-specific binding capacities of LILRB1 and LILRB2 as well as data from a large cohort of HIV-1-infected individuals (N = 5126) to test whether LILR-HLA class I interactions influence viral load in HIV-1 infection. Our analyses in persons of European descent, the largest ethnic group examined, show that the effect of HLA-B alleles on HIV-1 control correlates with the binding strength between corresponding HLA-B allotypes and LILRB2 (p = 10(-2)). Moreover, overall binding strength of LILRB2 to classical HLA class I allotypes, defined by the HLA-A/B/C genotypes in each patient, positively associates with viral replication in the absence of therapy in patients of both European (p = 10(-11)-10(-9)) and African (p = 10(-5)-10(-3)) descent. This effect appears to be driven by variations in LILRB2 binding affinities to HLA-B and is independent of individual class I allelic effects that are not related to the LILRB2 function. Correspondingly, in vitro experiments suggest that strong LILRB2-HLA binding negatively affects antigen-presenting properties of DCs. Thus, we propose an impact of LILRB2 on HIV-1 disease outcomes through altered regulation of DCs by LILRB2-HLA engagement.
Project description:Endometriosis is a disease in which endometriotic tissue occurs outside the uterus. Its pathogenesis is still unknown. The most widespread hypothesis claims that ectopic endometrium appears as a result of retrograde menstruation and its insufficient elimination by immunocytes. Some reports have shown expression of non-classical HLA-G molecules on ectopic endometrium. HLA-G is recognized by KIR2DL4, LILRB1 and LILRB2 receptors on natural killer (NK) and other cells. These receptors are polymorphic, which may affect their activity. In this study we investigated whether HLA-G, KIR2DL4, LILRB1 and LILRB2 polymorphisms may influence susceptibility to endometriosis and disease progression. We used polymerase chain reaction (PCR), PCR-restriction fragment length polymorphism (PCR-RFLP) and allelic discrimination methods with TaqMan SNP Genotyping Assays for typing of 276 patients with endometriosis and 314 healthy fertile women. The HLA-G rs1632947:GG genotype was associated with protection against the disease and its severe stages; HLA-G rs1233334:CT protected against progression; LILRB1 rs41308748:AA and LILRB2 rs383369:AG predisposed to the disease and its progression. No effect of KIR2DL4 polymorphism was observed. These results support the role of polymorphisms of HLA-G and its receptors LILRB1 and LILRB2 in susceptibility to endometriosis and its progression.
Project description:To identify new susceptibility loci for psoriasis, we undertook a genome-wide association study of 594,224 SNPs in 2,622 individuals with psoriasis and 5,667 controls. We identified associations at eight previously unreported genomic loci. Seven loci harbored genes with recognized immune functions (IL28RA, REL, IFIH1, ERAP1, TRAF3IP2, NFKBIA and TYK2). These associations were replicated in 9,079 European samples (six loci with a combined P < 5 × 10?? and two loci with a combined P < 5 × 10??). We also report compelling evidence for an interaction between the HLA-C and ERAP1 loci (combined P = 6.95 × 10??). ERAP1 plays an important role in MHC class I peptide processing. ERAP1 variants only influenced psoriasis susceptibility in individuals carrying the HLA-C risk allele. Our findings implicate pathways that integrate epidermal barrier dysfunction with innate and adaptive immune dysregulation in psoriasis pathogenesis.
Project description:Recent genome scans have established the presence of a major psoriasis-susceptibility locus in the human leukocyte antigen (HLA) complex on chromosome 6p21.3. To narrow the interval for candidate gene testing, we performed a linkage-disequilibrium analysis of 339 families, with the use of 62 physically mapped microsatellite markers spanning the major histocompatibility complex (MHC). As detected by use of the transmission/disequilibrium test (TDT), individual markers yielded significant linkage disequilibrium across most of the MHC. However, the strongest evidence for marker-trait disequilibrium was found in an approximately 300-kb region extending from the MICA gene to the corneodesmosin gene. Maximum-likelihood haplotypes were constructed across the entire MHC in the original sample and across a 1.2-Mb region of the central MHC in an expanded sample containing 139 additional families. Short (two- to five-marker) haplotypes were subjected to the TDT using a "moving-window" strategy that reduced the variability of TDT P values relative to the single-locus results. Furthermore, the expanded sample yielded a sharp peak of evidence for linkage disequilibrium that spanned approximately 170 kb and that was centered 100 kb telomeric to HLA-C. The 1.2-Mb interval was further dissected by means of recombinant ancestral haplotype analysis. This analysis identified risk haplotype 1 (RH1), which is a 60-kb fragment of ancestral haplotype 57.1, on all identifiable HLA risk haplotypes. One of these haplotypes exhibits significant linkage disequilibrium with psoriasis but does not carry Cw6, which is the HLA allele most strongly associated with the disease. These results demonstrate that RH1 is highly likely to carry the disease allele at PSORS1, and they exclude HLA-C and corneodesmosin with a high degree of confidence.
Project description:Previous studies have narrowed the interval containing PSORS1, the psoriasis-susceptibility locus in the major histocompatibility complex (MHC), to an approximately 300-kb region containing HLA-C and at least 10 other genes. In an effort to identify the PSORS1 gene, we cloned and completely sequenced this region from both chromosomes of five individuals. Two of the sequenced haplotypes were associated with psoriasis (risk), and the other eight were clearly unassociated (nonrisk). Comparison of sequence of the two risk haplotypes identified a 298-kb region of homology, extending from just telomeric of HLA-B to the HCG22 gene, which was flanked by clearly nonhomologous regions. Similar haplotypes cloned from unrelated individuals had nearly identical sequence. Combinatorial analysis of exonic variations in the known genes of the candidate interval revealed that HCG27, PSORS1C3, OTF3, TCF19, HCR, STG, and HCG22 bore no alleles unique to risk haplotypes among the 10 sequenced haplotypes. SPR1 and SEEK1 both had messenger RNA alleles specific to risk haplotypes, but only HLA-C and CDSN yielded protein alleles unique to risk. The risk alleles of HLA-C and CDSN (HLA-Cw6 and CDSN*TTC) were genotyped in 678 families with early-onset psoriasis; 620 of these families were also typed for 34 microsatellite markers spanning the PSORS1 interval. Recombinant haplotypes retaining HLA-Cw6 but lacking CDSN*TTC were significantly associated with psoriasis, whereas recombinants retaining CDSN*TTC but lacking HLA-Cw6 were not associated, despite good statistical power. By grouping recombinants with similar breakpoints, the most telomeric quarter of the 298-kb candidate interval could be excluded with high confidence. These results strongly suggest that HLA-Cw6 is the PSORS1 risk allele that confers susceptibility to early-onset psoriasis.
Project description:PSORS1 (psoriasis susceptibility gene 1) is a major susceptibility locus for psoriasis. Several fine-mapping studies have highlighted a 300-kb candidate region of PSORS1 where multiple biologically plausible candidate genes were suggested. The most recent study has indicated HLA-Cw6 as the primary PSORS1 risk allele within the candidate region in a Caucasian population. In this study, a family-based association analysis of the PSORS1 locus was performed by analyzing 10 polymorphic microsatellite markers from the PSORS1 region as well as HLA-B, HLA-C and CDSN loci in 163 Chinese families of psoriasis. Five marker loci show strong evidence (P<10(-3)), and one marker locus shows weak evidence (P = 0.04) for association. The haplotype cluster analysis showed that all the risk haplotypes are Cw6 positive and share a 369-kb region of homologous marker alleles which carries all the risk alleles, including HLA-Cw6 and CDSN*TTC, identified in this study. The recombinant haplotype analysis of the HLA-Cw6 and CDSN*TTC alleles in 228 Chinese families showed that the HLA-Cw6(-)/CDSN*TTC(+) recombinant haplotype is clearly not associated with risk for psoriasis (TratioNT = 29:57, p = 0.0025) in a Chinese population, suggesting that the CDSN*TTC allele itself does not confer risk without the presence of the HLA-Cw6 allele. The further exclusion analysis of the non-risk HLA-Cw6(-)/CDSN*TTC(+) recombinant haplotypes with common recombination breakpoints has allowed us to refine the location of PSORS1 to a small candidate region. Finally, we performed a conditional linkage analysis and showed that the HLA-Cw6 is a major risk allele but does not explain the full linkage evidence of the PSORS1 locus in a Chinese population. By performing a series of family-based association analyses of haplotypes as well as an exclusion analysis of recombinant haplotypes, we were able to refine the PSORS1 gene to a small critical region where HLA-C is a strong candidate to be the PSORS1 susceptibility gene.
Project description:Psoriasis is an immune-mediated skin disorder that is inherited as a complex genetic trait. Although genome-wide association scans (GWAS) have identified 36 disease susceptibility regions, more than 50% of the genetic variance can be attributed to a single Major Histocompatibility Complex (MHC) locus, known as PSORS1. Genetic studies indicate that HLA-C is the strongest PSORS1 candidate gene, since markers tagging HLA-Cw*0602 consistently generate the most significant association signals in GWAS. However, it is unclear whether HLA-Cw*0602 is itself the causal PSORS1 allele, especially as the role of SNPs that may affect its expression has not been investigated. Here, we have undertaken an in-depth molecular characterization of the PSORS1 interval, with a view to identifying regulatory variants that may contribute to disease susceptibility. By analysing high-density SNP data, we refined PSORS1 to a 179 kb region encompassing HLA-C and the neighbouring HCG27 pseudogene. We compared multiple MHC sequences spanning this refined locus and identified 144 candidate susceptibility variants, which are unique to chromosomes bearing HLA-Cw*0602. In parallel, we investigated the epigenetic profile of the critical PSORS1 interval and uncovered three enhancer elements likely to be active in T lymphocytes. Finally we showed that nine candidate susceptibility SNPs map within a HLA-C enhancer and that three of these variants co-localise with binding sites for immune-related transcription factors. These data indicate that SNPs affecting HLA-Cw*0602 expression are likely to contribute to psoriasis susceptibility and highlight the importance of integrating multiple experimental approaches in the investigation of complex genomic regions such as the MHC.
Project description:BackgroundPsoriasis is a genetically complex, chronic inflammatory skin disease. The authors have previously identified a susceptibility locus on chromosome 19p13 (PSORS6).Methods and resultsIn a follow-up linkage disequilibrium (LD) study in an independent family based cohort, the authors found evidence for association to a newly discovered microsatellite at this locus (D19SPS21, p<5.3x10(-5)). An LD based association scan in 300 trios revealed association to several single, single nucleotide polymorphisms (SNPs) in one LD block. When the authors stratified this cohort for carrying the PSORS1 risk allele at the HLA-C locus, evidence for association became much stronger at single SNP and haplotype levels (p values between 1.0x10(-4) and 8.0x10(-4)). In a replication study of 1114 patients and 937 control individuals, evidence for association was also observed after stratification to the PSORS1 risk allele. In both study groups, logistic regression showed evidence for interaction between the risk alleles at PSORS1 and PSORS6. Best p values for rs12459358 in both study groups remained significant after correction for multiple testing. The associated LD block did not comprise any known genes. Interestingly, an adjacent gene, MUC16, coding for a large glycosylated protein expressed in epithelia and of unknown function, could be shown to be also expressed in tissues relevant for pathogenesis of psoriasis such as skin and thymus. Immunohistochemical analyses of skin revealed focal staining for MUC16 in suprabasal epidermal cells. Further functional studies are required to clarify its potential role in psoriasis and identify the causal variant(s) at this locus.ConclusionThe data establish PSORS6 as a confirmed psoriasis susceptibility locus showing interaction with PSORS1.
Project description:BackgroundDeciphering the genetic architecture of complex traits is still a major challenge for human genetics. In most cases, genome-wide association studies have only partially explained the heritability of traits and diseases. Epistasis, one potentially important cause of this missing heritability, is difficult to explore at the genome-wide level. Here, we develop and assess a tool based on interactive odds ratios (IOR), Fast Odds Ratio-based sCan for Epistasis (FORCE), as a novel approach for exhaustive genome-wide epistasis search. IOR is the ratio between the multiplicative term of the odds ratio (OR) of having each variant over the OR of having both of them. By definition, an IOR that significantly deviates from 1 suggests the occurrence of an interaction (epistasis). As the IOR is fast to calculate, we used the IOR to rank and select pairs of interacting polymorphisms for P value estimation, which is more time consuming.ResultsFORCE displayed power and accuracy similar to existing parametric and non-parametric methods, and is fast enough to complete a filter-free genome-wide epistasis search in a few days on a standard computer. Analysis of psoriasis data uncovered novel epistatic interactions in the HLA region, corroborating the known major and complex role of the HLA region in psoriasis susceptibility.ConclusionsOur systematic study revealed the ability of FORCE to uncover novel interactions, highlighted the importance of exhaustiveness, as well as its specificity for certain types of interactions that were not detected by existing approaches. We therefore believe that FORCE is a valuable new tool for decoding the genetic basis of complex diseases.