Unknown

Dataset Information

0

Investigating Novel Syntheses of a Series of Unique Hybrid PLGA-Chitosan Polymers for Potential Therapeutic Delivery Applications.


ABSTRACT: Discovering new materials to aid in the therapeutic delivery of drugs is in high demand. PLGA, a FDA approved polymer, is well known in the literature to form films or nanoparticles that can load, protect, and deliver drug molecules; however, its incompatibility with certain drugs (due to hydrophilicity or charge repulsion interactions) limits its use. Combining PLGA or other polymers such as polycaprolactone with other safe and positively-charged molecules, such as chitosan, has been sought after to make hybrid systems that are more flexible in terms of loading ability, but often the reactions for polymer coupling use harsh conditions, films, unpurified products, or create a single unoptimized product. In this work, we aimed to investigate possible innovative improvements regarding two synthetic procedures. Two methods were attempted and analytically compared using nuclear magnetic resonance (NMR), fourier-transform infrared spectroscopy (FT-IR), and dynamic scanning calorimetry (DSC) to furnish pure, homogenous, and tunable PLGA-chitosan hybrid polymers. These were fully characterized by analytical methods. A series of hybrids was produced that could be used to increase the suitability of PLGA with previously non-compatible drug molecules.

SUBMITTER: Duskey JT 

PROVIDER: S-EPMC7249265 | biostudies-literature | 2020 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Investigating Novel Syntheses of a Series of Unique Hybrid PLGA-Chitosan Polymers for Potential Therapeutic Delivery Applications.

Duskey Jason Thomas JT   Baraldi Cecilia C   Gamberini Maria Cristina MC   Ottonelli Ilaria I   Da Ros Federica F   Tosi Giovanni G   Forni Flavio F   Vandelli Maria Angela MA   Ruozi Barbara B  

Polymers 20200404 4


Discovering new materials to aid in the therapeutic delivery of drugs is in high demand. PLGA, a FDA approved polymer, is well known in the literature to form films or nanoparticles that can load, protect, and deliver drug molecules; however, its incompatibility with certain drugs (due to hydrophilicity or charge repulsion interactions) limits its use. Combining PLGA or other polymers such as polycaprolactone with other safe and positively-charged molecules, such as chitosan, has been sought aft  ...[more]

Similar Datasets

| S-EPMC4164208 | biostudies-literature
| S-EPMC5676784 | biostudies-literature
| S-EPMC7285272 | biostudies-literature
| S-EPMC4665167 | biostudies-literature
| S-EPMC6722511 | biostudies-literature
| S-EPMC4699870 | biostudies-literature
| S-EPMC7180755 | biostudies-literature
| S-EPMC8541202 | biostudies-literature
| S-EPMC8161035 | biostudies-literature
| S-EPMC8624171 | biostudies-literature