Unknown

Dataset Information

0

Statistical Cerebrovascular Reactivity Signal Properties after Secondary Decompressive Craniectomy in Traumatic Brain Injury: A CENTER-TBI Pilot Analysis.


ABSTRACT: Decompressive craniectomy (DC) in traumatic brain injury (TBI) has been suggested to influence cerebrovascular reactivity. We aimed to determine if the statistical properties of vascular reactivity metrics and slow-wave relationships were impacted after DC, as such information would allow us to comment on whether vascular reactivity monitoring remains reliable after craniectomy. Using the CENTER-TBI High Resolution Intensive Care Unit (ICU) Sub-Study cohort, we selected those secondary DC patients with high-frequency physiological data for both at least 24 h pre-DC, and more than 48 h post-DC. Data for all physiology measures were separated into the 24 h pre-DC, the first 48 h post-DC, and beyond 48 h post-DC. We produced slow-wave data sheets for intracranial pressure (ICP) and mean arterial pressure (MAP) per patient. We also derived a Pressure Reactivity Index (PRx) as a continuous cerebrovascular reactivity metric updated every minute. The time-series behavior of the PRx was modeled for each time period per patient. Finally, the relationship between ICP and MAP during these three time periods was assessed using time-series vector autoregressive integrative moving average (VARIMA) models, impulse response function (IRF) plots, and Granger causality testing. Ten patients were included in this study. Mean PRx and proportion of time above PRx thresholds were not affected by craniectomy. Similarly, PRx time-series structure was not affected by DC, when assessed in each individual patient. This was confirmed with Granger causality testing, and VARIMA IRF plotting for the MAP/ICP slow-wave relationship. PRx metrics and statistical time-series behavior appear not to be substantially influenced by DC. Similarly, there is little change in the relationship between slow waves of ICP and MAP before and after DC. This may suggest that cerebrovascular reactivity monitoring in the setting of DC may still provide valuable information regarding autoregulation.

SUBMITTER: Zeiler FA 

PROVIDER: S-EPMC7249464 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC10432786 | biostudies-literature
| S-EPMC6704258 | biostudies-literature
| S-EPMC4841020 | biostudies-literature
| S-EPMC7307675 | biostudies-literature
| S-EPMC7336886 | biostudies-literature
| S-EPMC7000464 | biostudies-literature
| S-EPMC6525666 | biostudies-literature
| S-EPMC8155500 | biostudies-literature
| S-EPMC7232651 | biostudies-literature
| S-EPMC6953357 | biostudies-literature