Project description:Although airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been recognized, the condition of ventilation for its occurrence is still being debated. We analyzed a coronavirus disease 2019 (COVID-19) outbreak involving three families in a restaurant in Guangzhou, China, assessed the possibility of airborne transmission, and characterized the associated environmental conditions. We collected epidemiological data, obtained a full video recording and seating records from the restaurant, and measured the dispersion of a warm tracer gas as a surrogate for exhaled droplets from the index case. Computer simulations were performed to simulate the spread of fine exhaled droplets. We compared the in-room location of subsequently infected cases and spread of the simulated virus-laden aerosol tracer. The ventilation rate was measured using the tracer gas concentration decay method. This outbreak involved ten infected persons in three families (A, B, C). All ten persons ate lunch at three neighboring tables at the same restaurant on January 24, 2020. None of the restaurant staff or the 68 patrons at the other 15 tables became infected. During this occasion, the measured ventilation rate was 0.9 L/s per person. No close contact or fomite contact was identified, aside from back-to-back sitting in some cases. Analysis of the airflow dynamics indicates that the infection distribution is consistent with a spread pattern representative of long-range transmission of exhaled virus-laden aerosols. Airborne transmission of the SARS-CoV-2 virus is possible in crowded space with a ventilation rate of 1 L/s per person.
Project description:There is increasing evidence of SARS-CoV-2 transmission via aerosol; the number of cases of transmission via this route reported in the literature remains however limited. This study examines a case of clustering that occurred in a courtroom, in which 5 of the 10 participants were tested positive within days of the hearing. Ventilation loss rates and dispersion of fine aerosols were measured through CO2 injections and lactose aerosol generation. Emission rate and influencing parameters were then computed using a well-mixed dispersion model. The emission rate from the index case was estimated at 130 quanta h-1 (interquartile (97-155 quanta h-1 ). Measured lactose concentrations in the room were found relatively homogenous (n = 8, mean 336 µg m-3 , SD = 39 µg m-3 ). Air renewal was found to play an important role for event durations greater than 0.5 h and loss rate below 2-3 h-1 . The estimated emission rate suggests a high viral load in the index case and/or a high SARS-CoV-2 infection coefficient. High probabilities of infection in similar indoor situations are related to unfavorable conditions of ventilation, emission rate, and event durations. Source emission control appears essential to reduce aerosolized infection in events lasting longer than 0.5 h.
Project description:A key consideration in the Covid-19 pandemic is the dominant modes of transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The objective of this review was to synthesise the evidence for the potential airborne transmission of SARS-CoV-2 via aerosols. Systematic literature searches were conducted in PubMed, Embase, Europe PMC and National Health Service UK evidence up to 27 July 2020. A protocol was published and Cochrane guidance for rapid review methodology was adhered to throughout. Twenty-eight studies were identified. Seven out of eight epidemiological studies suggest aerosol transmission may occur, with enclosed environments and poor ventilation noted as possible contextual factors. Ten of the 16 air sampling studies detected SARS-CoV-2 ribonucleic acid; however, only three of these studies attempted to culture the virus with one being successful in a limited number of samples. Two of four virological studies using artificially generated aerosols indicated that SARS-CoV-2 is viable in aerosols. The results of this review indicate there is inconclusive evidence regarding the viability and infectivity of SARS-CoV-2 in aerosols. Epidemiological studies suggest possible transmission, with contextual factors noted. Viral particles have been detected in air sampling studies with some evidence of clinical infectivity, and virological studies indicate these particles may represent live virus, adding further plausibility. However, there is uncertainty as to the nature and impact of aerosol transmission of SARS-CoV-2, and its relative contribution to the Covid-19 pandemic compared with other modes of transmission.
Project description:BackgroundAssessing alveolar recruitment at different positive end-expiratory pressure (PEEP) levels is a major clinical and research interest because protective ventilation implies opening the lung without inducing overdistention. The pressure-volume (P-V) curve is a validated method of assessing recruitment but reflects global characteristics, and changes at the regional level may remain undetected. The aim of the present study was to compare, in intubated patients with acute hypoxemic respiratory failure (AHRF) and acute respiratory distress syndrome (ARDS), lung recruitment measured by P-V curve analysis, with dynamic changes in poorly ventilated units of the dorsal lung (dependent silent spaces [DSSs]) assessed by electrical impedance tomography (EIT). We hypothesized that DSSs might represent a dynamic bedside measure of recruitment.MethodsWe carried out a prospective interventional study of 14 patients with AHRF and ARDS admitted to the intensive care unit undergoing mechanical ventilation. Each patient underwent an incremental/decremental PEEP trial that included five consecutive phases: PEEP 5 and 10 cmH2O, recruitment maneuver + PEEP 15 cmH2O, then PEEP 10 and 5 cmH2O again. We measured, at the end of each phase, recruitment from previous PEEP using the P-V curve method, and changes in DSS were continuously monitored by EIT.ResultsPEEP changes induced alveolar recruitment as assessed by the P-V curve method and changes in the amount of DSS (p < 0.001). Recruited volume measured by the P-V curves significantly correlated with the change in DSS (rs = 0.734, p < 0.001). Regional compliance of the dependent lung increased significantly with rising PEEP (median PEEP 5 cmH2O = 11.9 [IQR 10.4-16.7] ml/cmH2O, PEEP 15 cmH2O = 19.1 [14.2-21.3] ml/cmH2O; p < 0.001), whereas regional compliance of the nondependent lung decreased from PEEP 5 cmH2O to PEEP 15 cmH2O (PEEP 5 cmH2O = 25.3 [21.3-30.4] ml/cmH2O, PEEP 15 cmH2O = 20.0 [16.6-22.8] ml/cmH2O; p <0.001). By increasing the PEEP level, the center of ventilation moved toward the dependent lung, returning to the nondependent lung during the decremental PEEP steps.ConclusionsThe variation of DSSs dynamically measured by EIT correlates well with lung recruitment measured using the P-V curve technique. EIT might provide useful information to titrate personalized PEEP.Trial registrationClinicalTrials.gov, NCT02907840 . Registered on 20 September 2016.
Project description:The Coronavirus Disease 2019 (COVID-19) highlights the importance of understanding and controlling the spread of the coronavirus between persons. We experimentally and numerically investigated an advanced engineering and environmental method on controlling the transmission of airborne SARS-CoV-2-laden aerosols in the breathing microenvironment between two persons during interactive breathing process by combining the limited space air stability and a ventilation method. Experiments were carried out in a full-scale ventilated room with different limited space air stability conditions, i.e., stable condition, neutral condition and unstable condition. Two real humans were involved to conducted normal breathing process in the room and the exhaled carbon dioxide was used as the surrogate of infectious airborne SARS-CoV-2-laden aerosols from respiratory activities. A correspondent numerical model was established to visualize the temperature field and contaminated field in the test room. Results show that the performance of a ventilation system on removing infectious airborne SARS-CoV-2-laden aerosols from the interpersonal breathing microenvironment is dependent on the limited space air stability conditions. Appropriate ventilation method should be implemented based on an evaluation of the air condition. It is recommended that total volume ventilation methods are suitable for unstable and neutral conditions and local ventilation methods are preferable for stable conditions. This study provides an insight into the transmission of airborne SARS-CoV-2-laden aerosols between persons in ventilated rooms with different limited space air stability conditions. Useful guidance has been provided to cope with COVID-19 in limited spaces.
Project description:Although much has been discovered regarding the characteristics of SARS-CoV-2, its presence in aerosols and their implications in the context of the pandemic is still controversial. More research on this topic is needed to contribute to these discussions. Presented herein are the results of ongoing research to detect SARS-CoV-2 RNA in aerosol in different hospital facilities (indoor environments) and public spaces (outdoor environments) of a metropolitan center in Brazil. From May to August 2020, 62 samples were collected using active sampling method (air samplers with filters) and passive method (petri dishes) in two hospitals, with different occupancies and infrastructure for contamination control. Outdoor public spaces such as sidewalks and a bus station were also investigated. Five air samples from four facilities in a hospital tested positive for SARS-CoV-2 in suspended and sedimentable particles. SARS-CoV-2 was found in aerosols inside the Intensive Care Unit (ICU), in the protective apparel removal room, in the room containing patient mobile toilets and used clothes (room with natural ventilation) and in an external corridor adjacent to the ICU, probably coming from infected patients and/or from aerosolization of virus-laden particles on material/equipment. Our findings reinforce the hypothesis of airborne transmission of the new coronavirus, contributing to the planning of effective practices for pandemic control.
Project description:The severity of infectious disease outbreaks is governed by patterns of human contact, which vary by geography, social organization, mobility, access to technology and healthcare, economic development, and culture. Whereas globalized societies and urban centers exhibit characteristics that can heighten vulnerability to pandemics, small-scale subsistence societies occupying remote, rural areas may be buffered. Accordingly, voluntary collective isolation has been proposed as one strategy to mitigate the impacts of COVID-19 and other pandemics on small-scale Indigenous populations with minimal access to healthcare infrastructure. To assess the vulnerability of such populations and the viability of interventions such as voluntary collective isolation, we simulate and analyze the dynamics of SARS-CoV-2 infection among Amazonian forager-horticulturalists in Bolivia using a stochastic network metapopulation model parameterized with high-resolution empirical data on population structure, mobility, and contact networks. Our model suggests that relative isolation offers little protection at the population level (expected approximately 80% cumulative incidence), and more remote communities are not conferred protection via greater distance from outside sources of infection, due to common features of small-scale societies that promote rapid disease transmission such as high rates of travel and dense social networks. Neighborhood density, central household location in villages, and household size greatly increase the individual risk of infection. Simulated interventions further demonstrate that without implausibly high levels of centralized control, collective isolation is unlikely to be effective, especially if it is difficult to restrict visitation between communities as well as travel to outside areas. Finally, comparison of model results to empirical COVID-19 outcomes measured via seroassay suggest that our theoretical model is successful at predicting outbreak severity at both the population and community levels. Taken together, these findings suggest that the social organization and relative isolation from urban centers of many rural Indigenous communities offer little protection from pandemics and that standard control measures, including vaccination, are required to counteract effects of tight-knit social structures characteristic of small-scale populations.