Project description:In the last two years, the coronavirus disease 19 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a scientific and social challenge worldwide. Vaccines have been the most effective intervention for reducing virus transmission and disease severity. However, virus genetic variants are still circulating among vaccinated individuals with different symptomatology disease cases. Understanding the protective or disease associated mechanisms in vaccinated individuals is relevant to advance in vaccine development and implementation. To address this objective, serum protein profiles were characterized by quantitative proteomics and data analysis algorithms in four cohorts of vaccinated individuals uninfected and SARS-CoV-2 infected with asymptomatic, nonsevere and severe disease symptomatology. The results showed that immunoglobulins were the most overrepresented proteins in infected cohorts when compared to PCR-negative individuals. The immunoglobulin profile varied between different infected cohorts and correlated with protective or disease associated capacity. Overrepresented immunoglobulins in PCR-positive individuals correlated with protective response against SARS-CoV-2, other viruses, and thrombosis in asymptomatic cases. In nonsevere cases, correlates of protection against SARS-CoV-2 and HBV together with risk of myasthenia gravis and allergy and autoantibodies were observed. Patients with severe symptoms presented risk for allergy, chronic idiopathic thrombocytopenic purpura, and autoantibodies. The analysis of underrepresented immunoglobulins in PCR-positive compared to PCR-negative individuals identified vaccine-induced protective epitopes in various coronavirus proteins including the Spike receptor-binding domain RBD. Non-immunoglobulin proteins were associated with COVID-19 symptoms and biological processes. These results evidence host-associated differences in response to vaccination and the possibility of improving vaccine efficacy against SARS-CoV-2.
Project description:The SARS-CoV-2 Delta (B.1.617.2) variant is capable of infecting vaccinated persons. An open question remains as to whether deficiencies in specific vaccine-elicited immune responses result in susceptibility to vaccine breakthrough infection. We investigated 55 vaccine breakthrough infection cases (mostly Delta) in Singapore, comparing them against 86 vaccinated close contacts who did not contract infection. Vaccine breakthrough cases showed lower memory B cell frequencies against SARS-CoV-2 receptor binding domain (RBD). Compared to plasma antibodies, antibodies secreted by memory B cells retained a higher fraction of neutralizing properties against the Delta variant. Inflammatory cytokines including IL-1β and TNF were lower in vaccine breakthrough infections than primary infection of similar disease severity, underscoring the usefulness of vaccination in preventing inflammation. This report highlights the importance of memory B cells against vaccine breakthrough, and suggests that lower memory B cell levels may be a correlate of risk for Delta vaccine breakthrough infection.
Project description:Blood collected from adults pre vaccination and post vaccination to study the immune effects of COVID-19 vaccination and how they relate to antibody and T-cell responses.
Project description:Coronavirus Disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a newly emerged coronavirus, and has been pandemic since March 2020 and led to many fatalities. Vaccines represent the most efficient means to control and stop the pandemic of COVID-19. However, currently there is no effective COVID-19 vaccine approved to use worldwide except for two human adenovirus vector vaccines, three inactivated vaccines, and one peptide vaccine for early or limited use in China and Russia. Safe and effective vaccines against COVID-19 are in urgent need. Researchers around the world are developing 213 COVID-19 candidate vaccines, among which 44 are in human trials. In this review, we summarize and analyze vaccine progress against SARS-CoV, Middle-East respiratory syndrome Coronavirus (MERS-CoV), and SARS-CoV-2, including inactivated vaccines, live attenuated vaccines, subunit vaccines, virus like particles, nucleic acid vaccines, and viral vector vaccines. As SARS-CoV-2, SARS-CoV, and MERS-CoV share the common genus, Betacoronavirus, this review of the major research progress will provide a reference and new insights into the COVID-19 vaccine design and development.
Project description:The pandemic caused by the worldwide spread of the coronavirus, which first appeared in 2019, has been named coronavirus disease 19 (COVID-19). More than 4.5 million deaths have been recorded due to the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), according to the World Health Organization. COVID-19 Dashboard in September 2021. Apart from the wildtype, other variations have been successfully transmitted early in the outbreak although they were not discovered until March 2020. Modifications in the SARS-CoV-2 genetic material, such as mutation and recombination, have the ability to modify the viral life span, along with transitivity, cellular tropism, and symptom severity. Several processes are involved in introducing novel vaccines to the population, including vaccine manufacturing, preclinical studies, Food and Drug Administration permission or certification, processing, and marketing. COVID-19 vaccine candidates have been developed by a number of public and private groups employing a variety of strategies, such as RNA, DNA, protein, and viral vectored vaccines. This comprehensive review, which included the most subsequent evidence on unique features of SARS-CoV-2 and the associated morbidity and mortality, was carried out using a systematic search of recent online databases in order to generate useful knowledge about the COVID-19 updated versions and their consequences on the disease symptoms and vaccine development.
Project description:IntroductionIn the race to deploy vaccines to prevent COVID-19, there is a need to understand factors influencing vaccine hesitancy. Secondary risk theory is a useful framework to explain this, accounting for concerns about vaccine efficacy and safety.MethodsDuring the first week of July, 2020, participants (N = 216) evaluated one of three different hypothetical vaccine scenarios describing an FDA-approved vaccine becoming available "next week," "in one year," or "in two years." Dependent variables were perceived vaccine efficacy, self-efficacy, perceived vaccine risk, and vaccination willingness. Covariates included vaccine conspiracy beliefs, science pessimism, media dependency, and perceived COVID-19 risk. Data analysis employed multiple analysis of covariance (MANCOVA).ResultsPerceived vaccine efficacy was lowest for the next-week vaccine (η2p = .045). Self-efficacy was higher for the two-year vaccine than the next-week vaccine (η2p = .029). Perceived vaccine risk was higher for the next-week vaccine than for the one-year vaccine (η2p = .032). Vaccination willingness did not differ among experimental treatments. In addition, vaccine conspiracy beliefs were negatively related to perceived vaccine efficacy (η2p = .142), self-efficacy (η2p = .031), and vaccination willingness (η2p = .143) and positively related to perceived vaccine risk (η2p = .216).ConclusionsThe rapid development of the COVID-19 vaccine may have heightened public concerns over efficacy, availability, and safety. However, the current findings showed a general willingness to take even the most rapidly developed vaccine. Nonetheless, there remains a need to communicate publicly and transparently about vaccine efficacy and safety and work to reduce vaccine conspiracy beliefs.
Project description:With the constantly mutating of SARS-CoV-2 and the emergence of Variants of Concern (VOC), the implementation of vaccination is critically important. Existing SARS-CoV-2 vaccines mainly include inactivated, live attenuated, viral vector, protein subunit, RNA, DNA, and virus-like particle (VLP) vaccines. Viral vector vaccines, protein subunit vaccines, and mRNA vaccines may induce additional cellular or humoral immune regulations, including Th cell responses and germinal center responses, and form relevant memory cells, greatly improving their efficiency. However, some viral vector or mRNA vaccines may be associated with complications like thrombocytopenia and myocarditis, raising concerns about the safety of these COVID-19 vaccines. Here, we systemically assess the safety and efficacy of COVID-19 vaccines, including the possible complications and different effects on pregnant women, the elderly, people with immune diseases and acquired immunodeficiency syndrome (AIDS), transplant recipients, and cancer patients. Based on the current analysis, governments and relevant agencies are recommended to continue to advance the vaccine immunization process. Simultaneously, special attention should be paid to the health status of the vaccines, timely treatment of complications, vaccine development, and ensuring the lives and health of patients. In addition, available measures such as mix-and-match vaccination, developing new vaccines like nanoparticle vaccines, and optimizing immune adjuvant to improve vaccine safety and efficacy could be considered.
Project description:Purpose of reviewHuman race is currently facing the wrath of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a highly transmittable and pathogenic RNA virus, causing coronavirus disease 2019 (COVID-19), the worst ever global pandemic. Coronaviruses (CoVs) have emerged as a major public health concern. Urgent global response to COVID-19 outbreak has been to limit spread of SARS-CoV-2 via extensive monitoring and containment. Various treatment regimens have been adopted to manage COVID-19, with known drugs and drug combinations used to decrease the morbidity and mortality associated with COVID-19. Intensive research on various fronts including studying molecular and structural aspects of these viruses and unraveling the pathophysiology and mechanistic basis of COVID-19 aimed at developing effective prophylactic, therapeutic agents and vaccines has been carried out globally.Recent findingsNo approved antiviral treatment except remdesivir exists for SARS-CoV-2 till date though novel drug targets have been identified. However, worldwide frantic and competitive vaccine development pharmaceutical race has borne fruit in the form of a number of promising candidate vaccines, out of which few have already received emergency use authorization by regulatory bodies in record time.SummaryThis review highlights the painstaking efforts of healthcare workers and scientific community to successfully address the COVID-19 pandemic-though damage in the form of severe illness, loss of lives, and livelihood has left a serious mark. Focusing on extensive research on various therapeutic options and antiviral strategies including neutralizing antibodies, potential drugs, and drug targets, light has been shed on various diagnostic options and the amazing vaccine development process as well.