ABSTRACT: Gastric microbiota provides a biological barrier against the invasion of foreign pathogens from the oral cavity, playing a vital role in maintaining gastrointestinal health. Klebsiella spp. of oral origin causes various infections not only in gastrointestinal tract but also in other organs, with Klebsiella pneumoniae serotype K1 resulting in a liver abscess (KLA) through oral inoculation in mice. However, the relationship between gastric microbiota and the extra-gastrointestinal KLA infection is not clear. In our study, a 454 pyrosequencing analysis of the bacterial 16S rRNA gene shows that the composition of gastric mucosal microbiota in mice with or without KLA infection varies greatly after oral inoculation with K. pneumoniae serotype K1 isolate. Interestingly, only several bacteria taxa show a significant change in gastric mucosal microbiota of KLA mice, including the decreased abundance of Bacteroides, Alisptipes and increased abundance of Streptococcus. It is worth noting that the abundance of Klebsiella exhibits an obvious increase in KLA mice, which might be closely related to KLA infection. At the same time, the endogenous antibiotics, defensins, involved in the regulation of the bacterial microbiota also show an increase in stomach and intestine. All these findings indicate that liver abscess caused by K. pneumoniae oral inoculation has a close relationship with gastric microbiota, which might provide important information for future clinical treatment.Gastric microbiota provides a biological barrier against the invasion of foreign pathogens from the oral cavity, playing a vital role in maintaining gastrointestinal health. Klebsiella spp. of oral origin causes various infections not only in gastrointestinal tract but also in other organs, with Klebsiella pneumoniae serotype K1 resulting in a liver abscess (KLA) through oral inoculation in mice. However, the relationship between gastric microbiota and the extra-gastrointestinal KLA infection is not clear. In our study, a 454 pyrosequencing analysis of the bacterial 16S rRNA gene shows that the composition of gastric mucosal microbiota in mice with or without KLA infection varies greatly after oral inoculation with K. pneumoniae serotype K1 isolate. Interestingly, only several bacteria taxa show a significant change in gastric mucosal microbiota of KLA mice, including the decreased abundance of Bacteroides, Alisptipes and increased abundance of Streptococcus. It is worth noting that the abundance of Klebsiella exhibits an obvious increase in KLA mice, which might be closely related to KLA infection. At the same time, the endogenous antibiotics, defensins, involved in the regulation of the bacterial microbiota also show an increase in stomach and intestine. All these findings indicate that liver abscess caused by K. pneumoniae oral inoculation has a close relationship with gastric microbiota, which might provide important information for future clinical treatment.