Project description:Global healthcare systems are challenged by the COVID-19 pandemic. There is a need to optimize allocation of treatment and resources in intensive care, as clinically established risk assessments such as SOFA and APACHE II scores show only limited performance for predicting the survival of severely ill COVID-19 patients. Comprehensively capturing the host physiology, we speculated that proteomics in combination with new data-driven analysis strategies could produce a new generation of prognostic discriminators. We studied two independent cohorts of patients with severe COVID-19 who required intensive care and invasive mechanical ventilation. SOFA score, Charlson comorbidity index and APACHE II score were poor predictors of survival. Instead, using plasma proteomes quantifying 302 plasma protein groups at 387 timepoints in 57 critically ill patients on invasive mechanical ventilation, we found 14 proteins that showed trajectories different between survivors and non-survivors. A proteomic predictor trained on single samples obtained at the first time point at maximum treatment level (i.e. WHO grade 7) and weeks before the outcome, achieved accurate classification of survivors (AUROC 0.81, n=49). We tested the established predictor on an independent validation cohort (AUROC of 1.0, n=24). The majority of proteins with high relevance in the prediction model belong to the coagulation system and complement cascade. Our study demonstrates that predictors derived from plasma protein levels have the potential to substantially outperform current prognostic markers in intensive care.
Project description:Coronavirus disease 2019 (COVID-19) can lead to multiorgan damage and fatal outcomes. MicroRNAs (miRNAs) are detectable in blood, reflecting cell activation and tissue injury. We performed small RNA-Seq in healthy controls (N=11), non-severe (N=18) and severe (N=16) COVID-19 patients
Project description:PurposeInformation regarding the use of lung ultrasound (LUS) in patients with Coronavirus disease 2019 (COVID-19) is quickly accumulating, but its use for risk stratification and outcome prediction has yet to be described. We performed the first systematic and comprehensive LUS evaluation of consecutive patients hospitalized with COVID-19 infection, in order to describe LUS findings and their association with clinical course and outcome.MethodsBetween 21/03/2020 and 04/05/2020, 120 consecutive patients admitted to the Tel Aviv Medical Center due to COVID-19, underwent complete LUS within 24 h of admission. A second exam was performed in case of clinical deterioration. LUS score of 0 (best)-36 (worst) was assigned to each patient. LUS findings were compared with clinical data.ResultsThe median baseline total LUS score was 15, IQR [7-20]. Baseline LUS score was 0-18 in 80 (67%) patients, and 19-36 in 40 (33%) patients. The majority had patchy pleural thickening (n = 100; 83%), or patchy subpleural consolidations (n = 93; 78%) in at least one zone. The prevalence of pleural thickening, subpleural consolidations and the total LUS score were all correlated with severity of illness on admission. Clinical deterioration was associated with increased follow-up LUS scores (p = 0.0009), mostly due to loss of aeration in anterior lung segments. The optimal cutoff point for LUS score was 18 (sensitivity = 62%, specificity = 74%). Both mortality and need for invasive mechanical ventilation were increased with baseline LUS score > 18 compared to baseline LUS score 0-18. Unadjusted hazard ratio of death for LUS score was 1.08 per point [1.02-1.16], p = 0.008; Unadjusted hazard ratio of the composite endpoint (death or need for invasive mechanical ventilation) for LUS score was 1.12 per point [1.05-1.2], p = 0.0008.ConclusionHospitalized patients with COVID-19, at all clinical grades, present with pathological LUS findings. Baseline LUS score strongly correlates with the eventual need for invasive mechanical ventilation and is a strong predictor of mortality. Routine use of LUS may guide patients' management strategies, as well as resource allocation in case of surge capacity.
Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia emerged in Wuhan, China in December 2019. Unfortunately, there is a lack of evidence about the optimal management of novel coronavirus disease 2019 (COVID-19), and even less is available in patients on maintenance hemodialysis therapy than in the general population. In this retrospective, observational, single-center study, we analyzed the clinical course and outcomes of all maintenance hemodialysis patients hospitalized with COVID-19 from March 12th to April 10th, 2020 as confirmed by real-time polymerase chain reaction. Baseline features, clinical course, laboratory data, and different therapies were compared between survivors and nonsurvivors to identify risk factors associated with mortality. Among the 36 patients, 11 (30.5%) died, and 7 were able to be discharged within the observation period. Clinical and radiological evolution during the first week of admission were predictive of mortality. Among the 36 patients, 18 had worsening of their clinical status, as defined by severe hypoxia with oxygen therapy requirements greater than 4 L/min and radiological worsening. Significantly, 11 of those 18 patients (61.1%) died. None of the classical cardiovascular risk factors in the general population were associated with higher mortality. Compared to survivors, nonsurvivors had significantly longer dialysis vintage, increased lactate dehydrogenase (490 U/l ± 120 U/l vs. 281 U/l ± 151 U/l, P = 0.008) and C-reactive protein levels (18.3 mg/dl ± 13.7 mg/dl vs. 8.1 mg/dl ± 8.1 mg/dl, P = 0.021), and a lower lymphocyte count (0.38 ×103/µl ± 0.14 ×103/µl vs. 0.76 ×103/µl ± 0.48 ×103/µl, P = 0.04) 1 week after clinical onset. Thus, the mortality among hospitalized hemodialysis patients diagnosed with COVID-19 is high. Certain laboratory tests can be used to predict a worsening clinical course.
Project description:Prognostic characteristics inform risk stratification in intensive care unit (ICU) patients with coronavirus disease 2019 (COVID-19). We obtained blood samples (n = 474) from hospitalized COVID-19 patients (n = 123), non-COVID-19 ICU sepsis patients (n = 25) and healthy controls (n = 30). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was detected in plasma or serum (RNAemia) of COVID-19 ICU patients when neutralizing antibody response was low. RNAemia was associated with higher 28-day ICU mortality (hazard ratio [HR], 1.84 [95% CI, 1.22–2.77] adjusted for age and sex). In longitudinal comparisons, COVID-19 ICU patients had a distinct proteomic trajectory associated with RNAemia and mortality. Among COVID-19-enriched proteins, galectin-3 binding protein (LGALS3BP) and proteins of the complement system were identified as interaction partners of SARS-CoV-2 spike glycoprotein. Finally, machine learning identified ‘Age, RNAemia’ and ‘Age, pentraxin-3 (PTX3)’ as the best binary signatures associated with 28-day ICU mortality.
Project description:Prognostic characteristics inform risk stratification in intensive care unit (ICU) patients with coronavirus disease 2019 (COVID-19). We obtained blood samples (n = 474) from hospitalized COVID-19 patients (n = 123), non-COVID-19 ICU sepsis patients (n = 25) and healthy controls (n = 30). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was detected in plasma or serum (RNAemia) of COVID-19 ICU patients when neutralizing antibody response was low. RNAemia was associated with higher 28-day ICU mortality (hazard ratio [HR], 1.84 [95% CI, 1.22–2.77] adjusted for age and sex). In longitudinal comparisons, COVID-19 ICU patients had a distinct proteomic trajectory associated with RNAemia and mortality. Among COVID-19-enriched proteins, galectin-3 binding protein (LGALS3BP) and proteins of the complement system were identified as interaction partners of SARS-CoV-2 spike glycoprotein. Finally, machine learning identified ‘Age, RNAemia’ and ‘Age, pentraxin-3 (PTX3)’ as the best binary signatures associated with 28-day ICU mortality.
Project description:We perform shotgun transcriptome sequencing of human RNA obtained from nasopharyngeal swabs of patients with COVID-19, and identify a molecular signature associated with disease severity
Project description:IntroductionCritically ill Covid-19 pneumonia patients are likely to develop the sequence of acute pulmonary hypertension, right ventricular (RV) strain, and eventually RV failure due to known pathophysiology (endothelial inflammation plus thrombo-embolism) that promotes increased pulmonary vascular resistance and pulmonary artery pressure. This study aimed to investigate the occurrence of acute pulmonary hypertension (aPH) as per established trans-thoracic echocardiography (TTE) criteria in Covid-19 patients receiving intensive care and to explore whether short-term outcomes are affected by the presence of aPH.MethodsMedical records were reviewed for patients treated in the intensive care units at a tertiary university hospital over a month. The presence of aPH on the TTE was noted, and plasma NTproBNP and troponin were measured as markers of cardiac failure and myocardial injury, respectively. Follow-up data were collected 21 d after the performance of TTE.ResultsIn total, 26 of 67 patients (39%) had an assessed systolic pulmonary artery pressure of > 35 mmHg (group aPH), meeting the TTE definition of aPH. NTproBNP levels (median [range]: 1430 [102-30 300] vs. 470 [45-29 600] ng L-1 ; P = .0007), troponin T levels (63 [22-352] vs. 15 [5-407] ng L-1 ; P = .0002), and the 21-d mortality rate (46% vs. 7%; P < .001) were substantially higher in patients with aPH compared to patients not meeting aPH criteria.ConclusionTTE-defined acute pulmonary hypertension was frequently observed in severely ill Covid-19 patients. Furthermore, aPH was linked to biomarker-defined myocardial injury and cardiac failure, as well as an almost sevenfold increase in 21-d mortality.
Project description:ObjectivesCoronavirus disease 19 (COVID-19) is a major cause of hospital admission and represents a challenge for patient management during intensive care unit (ICU) stay. We aimed to describe the clinical course and outcomes of COVID-19 pneumonia in critically ill patients.MethodsWe performed a systematic search of peer-reviewed publications in MEDLINE, EMBASE and the Cochrane Library up to 15th August 2020. Preprints and reports were also included if they met the inclusion criteria. Study eligibility criteria were full-text prospective, retrospective or registry-based publications describing outcomes in patients admitted to the ICU for COVID-19, using a validated test. Participants were critically ill patients admitted in the ICU with COVID-19 infection.ResultsFrom 32 articles included, a total of 69 093 patients were admitted to the ICU and were evaluated. Most patients included in the studies were male (76 165/128 168, 59%, 26 studies) and the mean patient age was 56 (95%CI 48.5-59.8) years. Studies described high ICU mortality (21 145/65 383, 32.3%, 15 studies). The median length of ICU stay was 9.0 (95%CI 6.5-11.2) days, described in five studies. More than half the patients admitted to the ICU required mechanical ventilation (31 213/53 465, 58%, 23 studies) and among them mortality was very high (27 972/47 632, 59%, six studies). The duration of mechanical ventilation was 8.4 (95%CI 1.6-13.7) days. The main interventions described were the use of non-invasive ventilation, extracorporeal membrane oxygenation, renal replacement therapy and vasopressors.ConclusionsThis systematic review, including approximately 69 000 ICU patients, demonstrates that COVID-19 infection in critically ill patients is associated with great need for life-sustaining interventions, high mortality, and prolonged length of ICU stay.
Project description:BackgroundThe coronavirus disease 2019 (COVID-19) pandemic is responsible for millions of infections worldwide, and a substantial number of these patients will be admitted to the intensive care unit (ICU). Our objective was to describe the characteristics, outcomes and management of critically ill patients with COVID-19 pneumonia at a single designated pandemic centre in Montréal, Canada.MethodsA descriptive analysis was performed on consecutive critically ill patients with COVID-19 pneumonia admitted to the ICU at the Jewish General Hospital, a designated pandemic centre in Montréal, between Mar. 5 and May 21, 2020. Complete follow-up data corresponding to death or discharge from hospital health records were included to Aug. 4, 2020. We summarized baseline characteristics, management and outcomes, including mortality.ResultsA total of 106 patients were included in this study. Twenty-one patients (19.8%) died during their hospital stay, and the ICU mortality was 17.0% (18/106); all patients were discharged home or died, except for 4 patients (2 awaiting a rehabilitation bed and 2 awaiting long-term care). Twelve of 65 patients (18.5%) requiring mechanical ventilation died. Prone positioning was used in 29 patients (27.4%), including in 10 patients who were spontaneously breathing; no patient was placed on extracorporeal membrane oxygenation. High-flow nasal cannula was used in 51 patients (48.1%). Acute kidney injury was the most common complication, seen in 20 patients (18.9%), and 12 patients (11.3%) required renal replacement therapy. A total of 53 patients (50.0%) received corticosteroids.InterpretationOur cohort of critically ill patients with COVID-19 had lower mortality than that previously described in other jurisdictions. These findings may help guide critical care decision-making in similar health care systems in further COVID-19 surges.