Project description:Nucleocapsid gene-positive, envelope gene-negative (N2+/E-) SARS-CoV-2 PCR results obtained with the Cepheid Xpert Xpress SARS-CoV-2 assay are an infrequent phenomenon. We assessed the validity of the N2+/E- cases with an indirect approach by analyzing their occurrence in relation to overall positive PCR rates and absolute number of PCR tests (24,909 samples, collected June 2021 to July 2022). Additionally, 3022 samples were analyzed with the Xpert Xpress CoV-2-plus assay in August/September 2022. The incidence of monthly N2+/E- cases closely followed the overall frequency of positive tests (p < 0.001), while there was no correlation with the monthly number of PCR test. The observed distribution of N2+/E- cases implicates, that they are not merely artefacts, but rather represent samples with a very low viral load. This phenomenon will persist with the Xpert Xpress SARS-CoV-2 plus assay, which also produced more than 10% results where only one target gene replicated with a very high Ct value.
Project description:Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with enhanced transmissibility, pathogenicity, and immune escape ability have ravaged many countries and regions, which has brought substantial challenges to pandemic prevention and control. Real-time reverse transcriptase PCR (rRT-PCR) is widely used for SARS-CoV-2 detection but may be limited by the continuous evolution of the virus. However, the sensitivity of Chinese commercial rRT-PCR kits to critical SARS-CoV-2 variants remains unknown. In this study, contrived MS2 virus-like particles were used as reference materials to evaluate the analytical sensitivity of Daan, BioGerm, EasyDiagnosis, Liferiver, and Sansure kits when detecting six important variants (Alpha, Beta, Gamma, Delta, Omicron, and Fin-796H). The Beta and Delta variants adversely affected the analytical sensitivity of the BioGerm ORF1ab gene assay (9.52% versus 42.96%, P = 0.014, and 14.29% versus 42.96%, P = 0.040, respectively), whereas the N gene assay completely failed in terms of the Fin-796H variant. The Gamma and Fin-796H variants impeded the PCR amplification efficiency for the Sansure ORF1ab gene assay (33.33% versus 66.67%, P = 0.031, and 66.67% versus 95.24%, P = 0.040, respectively), and the Delta variant compromised the E gene assay (52.38% versus 85.71%, P = 0.019). The Alpha and Omicron variants had no significant effect on the kits. This study highlights the necessity of identifying the potential effect of viral mutations on the efficacy and sensitivity of clinical detection assays. It can also provide helpful insights regarding the development and optimization of diagnostic assays and aid the strategic management of the ongoing pandemic.
Project description:BackgroundInconclusive results in SARS-CoV-2 molecular assays cause confusion among clinicians and delay appropriate infection prevention and control. In this study, we aimed to characterize the respiratory specimens associated with inconclusive SARS-CoV-2 molecular assay results.MethodsWe re-evaluated inconclusive specimens by 3 additional RT-PCR assays and attempted to detect subgenomic RNA (sgRNA) in these specimens.ResultsAmong follow-up tests from confirmed SARS-CoV-2 cases, 36.3% of the inconclusive results were classified as presumptive positive results (45/124). However, none of the specimens from 36 screening cases was classified as a presumptive positive result. Among 160 inconclusive specimens, sgRNAs were detected in 78 samples (48.8%): 58 were confirmed cases (58/124, 46.8%) and 20 were screening cases (20/36, 55.6%).ConclusionsThe results of our study suggest the recommendation of considering inconclusive results as positive results for confirmed SARS-CoV-2 cases. In screening cases, viral remnants could be partially amplified in PCR assays, and these inconclusive results could be related to previous infections. In addition, sgRNAs were detected in about half of the inconclusive specimens; however, the clinical significance of sgRNA is not yet clear.
Project description:In the ongoing global fight against coronavirus disease 2019 (COVID-19), the sample preparation process for real-time reverse transcription polymerase chain reaction (rRT-PCR) faces challenges due to time-consuming steps, labor-intensive procedures, contamination risks, resource demands, and environmental implications. However, optimized strategies for sample preparation have been poorly investigated, and the combination of RNase inhibitors and Proteinase K has been rarely considered. Hence, we investigated combinations of several extraction-free protocols incorporating heat treatment, sample dilution, and Proteinase K and RNase inhibitors, and validated the effectiveness using 120 SARS-CoV-2 positive and 62 negative clinical samples. Combining sample dilution and heat treatment with Proteinase K and RNase inhibitors addition exhibited the highest sensitivity (84.26%) with a mean increase in cycle threshold (Ct) value of + 3.8. Meanwhile, combined sample dilution and heat treatment exhibited a sensitivity of 79.63%, accounting for a 38% increase compared to heat treatment alone. Our findings highlight that the incorporation of Proteinase K and RNase inhibitors with sample dilution and heat treatment contributed only marginally to the improvement without yielding statistically significant differences. Sample dilution significantly impacts SARS-CoV-2 detection, and sample conditions play a crucial role in the efficiency of extraction-free methods. Our findings may provide insights for streamlining diagnostic testing, enhancing its accessibility, cost-effectiveness, and sustainability.
Project description:Detection of SARS-CoV-2 RNA in nasopharyngeal samples using the real-time reverse transcription polymerase chain reaction (rRT-PCR) is the gold standard for diagnosing COVID-19. Determination of SARS-CoV-2 RNA by rRT-PCR sometimes results in an inconclusive test result due to a high cycle threshold-value. We retrospectively analyzed 30,851 SARS-CoV-2 rRT-PCR test results. Borderline positivity was considered as the presence of ≤25 viral copies per milliliter, while no amplification was considered as a negative test result. Of all test results, 204 were answered as borderline, of which 107 were accompanied by a follow-up test within 96 hours. Of the 107 follow-up samples, 10 (9.35%) were found positive for SARS-CoV-2. COVID-19 symptoms were not predictive for testing positive in the follow-up test. The positive SARS-CoV-2 samples in the follow-up group represented 0.92% of all positive test results, highlighting the need for retesting and increased hygienic measures for borderline SARS-CoV-2 patients [NCT04636294].
Project description:IntroductionThe gold standard for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection is real-time reverse transcription PCR (rRT-PCR), which is expensive, has a long turnaround time and requires special equipment and trained personnel. Nasopharyngeal swabs are uncomfortable, not suitable for certain patient groups and do not allow self-testing. Convenient, well-tolerated rapid antigen tests (RATs) for SARS-CoV-2 detection are called for.Gap statementMore real-life performance data on anterior nasal RATs are required.AimWe set out to evaluate the anterior nasal AMP RAT in comparison with rRT-PCR in a hospital cohort.MethodologyThe study included 175 patients, either hospitalized in a coronavirus disease 2019 (COVID-19) ward or screened in a preadmittance outpatient clinic. Two swabs were collected per patient: an anterior nasal one for the RAT and a combined naso-/oropharyngeal one for the rRT-PCR. Sixty-five patients (37%) were rRT-PCR-positive [cycle threshold (C t) <40].ResultsThe anterior nasal AMP RAT showed an overall sensitivity and specificity of 29.2 % (18.6-41.8, 95 % CI) and 100.0 % (96.7-100.0, 95 % CI) respectively. In patients with a C t value <25, <30 and <33, higher sensitivities were observed. Time since symptom onset was significantly higher in patients with a false-negative RAT (P=0.02).ConclusionThe anterior nasal AMP RAT showed low sensitivities in this cohort, especially in patients with a longer time since symptom onset. Further knowledge concerning the viral load and antigen expression over time and in different swabbing locations is needed to outline the usage time frame for SARS-CoV-2 RAT.
Project description:This study used digital polymerase chain reaction (dPCR) to determine whether envelope (E) gene-negative and nucleocapsid (N2) gene-positive (E-N+) results obtained with the Cepheid Xpert Xpress SARS-CoV-2 assay are reliable. Using droplet digital PCR results as a reference, 18 of 22 E-N+ samples with a low viral load (81.8%) were identified as true positives.
Project description:BackgroundTesting for COVID-19 remains limited in the United States and across the world. Poor allocation of limited testing resources leads to misutilization of health system resources, which complementary rapid testing tools could ameliorate.ObjectiveTo predict SARS-CoV-2 PCR positivity based on complete blood count components and patient sex.Study designA retrospective case-control design for collection of data and a logistic regression prediction model was used. Participants were emergency department patients > 18 years old who had concurrent complete blood counts and SARS-CoV-2 PCR testing. 33 confirmed SARS-CoV-2 PCR positive and 357 negative patients at Stanford Health Care were used for model training. Validation cohorts consisted of emergency department patients > 18 years old who had concurrent complete blood counts and SARS-CoV-2 PCR testing in Northern California (41 PCR positive, 495 PCR negative), Seattle, Washington (40 PCR positive, 306 PCR negative), Chicago, Illinois (245 PCR positive, 1015 PCR negative), and South Korea (9 PCR positive, 236 PCR negative).ResultsA decision support tool that utilizes components of complete blood count and patient sex for prediction of SARS-CoV-2 PCR positivity demonstrated a C-statistic of 78 %, an optimized sensitivity of 93 %, and generalizability to other emergency department populations. By restricting PCR testing to predicted positive patients in a hypothetical scenario of 1000 patients requiring testing but testing resources limited to 60 % of patients, this tool would allow a 33 % increase in properly allocated resources.ConclusionsA prediction tool based on complete blood count results can better allocate SARS-CoV-2 testing and other health care resources such as personal protective equipment during a pandemic surge.
Project description:To date, most of the evidence suggests that smoking is negatively associated with testing positive for SARS-CoV-2. However, evidence has several methodological limitations. Using an outpatient sample population, we analyzed the association of testing positive for SARS-CoV-2 and smoking considering comorbidities, socioeconomic and demographic factors. Baseline data were obtained from a cohort during the first wave of the pandemic in Geneva, Switzerland (March-April 2020). RT-PCR tests were carried out on individuals suspected of having SARS-CoV-2 according to the testing strategy at that time. Logistic regressions were performed to test the association of smoking and testing positive for SARS-CoV-2 and further adjusted for comorbidities, socioeconomic and demographic factors. The sample included 5,169 participants; 60% were women and the mean age was 41 years. The unadjusted OR for testing positive for SARS-CoV-2 was 0.46 (CI: 0.38-0.54). After adjustment for comorbidities, socioeconomic and demographic factors, smoking was still negatively associated with testing positive for SARS-CoV-2 (OR: 0.44; CI: 0.35-0.77). Women (OR: 0.79; CI: 0.69-0.91), higher postal income (OR: 0.97; CI: 0.95-0.99), having respiratory (OR: 0.68; CI: 0.55-0.84) and immunosuppressive disorders (OR: 0.63; CI: 0.44-0.88) also showed independent negative associations with a positive test for SARS-CoV-2. Smoking was negatively associated with a positive test for SARS-CoV-2 independently of comorbidities, socioeconomic and demographic factors. Since having respiratory or immunosuppressive conditions and being females and healthcare workers were similarly negatively associated with SARS-CoV-2 positive testing, we hypothesize that risk factor-related protective or testing behaviors could have induced a negative association with SARS-CoV-2.
Project description:Immunocompromised adults can have prolonged acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive RT-PCR results, long after the initial diagnosis of coronavirus disease 2019 (COVID-19). This study aimed to determine if SARS-CoV-2 virus can be recovered in viral cell culture from immunocompromised adults with persistently positive SARS-CoV-2 RT-PCR tests. We obtained 20 remnant SARS-CoV-2 PCR positive nasopharyngeal swabs from 20 immunocompromised adults with a positive RT-PCR test ≥14 days after the initial positive test. The patients' 2nd test samples underwent SARS-CoV-2 antigen testing, and culture with Vero-hACE2-TMPRSS2 cells. Viral RNA and cultivable virus were recovered from the cultured cells after qRT-PCR and plaque assays. Of 20 patients, 10 (50%) had a solid organ transplant and 5 (25%) had a hematologic malignancy. For most patients, RT-PCR Ct values increased over time. There were 2 patients with positive viral cell cultures; one patient had chronic lymphocytic leukemia treated with venetoclax and obinutuzumab who had a low viral titer of 27 PFU/mL. The second patient had marginal zone lymphoma treated with bendamustine and rituximab who had a high viral titer of 2 x 106 PFU/mL. Most samples collected ≥7 days after an initial positive SARS-CoV-2 RT-PCR had negative viral cell cultures. The 2 patients with positive viral cell cultures had hematologic malignancies treated with chemotherapy and B cell depleting therapy. One patient had a high concentration titer of cultivable virus. Further data are needed to determine risk factors for persistent viral shedding and methods to prevent SARS-CoV-2 transmission from immunocompromised hosts.