Unknown

Dataset Information

0

Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease.


ABSTRACT: A novel coronavirus SARS-CoV-2, also called novel coronavirus 2019 (nCoV-19), started to circulate among humans around December 2019, and it is now widespread as a global pandemic. The disease caused by SARS-CoV-2 virus is called COVID-19, which is highly contagious and has an overall mortality rate of 6.96% as of May 4, 2020. There is no vaccine or antiviral available for SARS-CoV-2. In this study, we report our discovery of inhibitors targeting the SARS-CoV-2 main protease (Mpro). Using the FRET-based enzymatic assay, several inhibitors including boceprevir, GC-376, and calpain inhibitors II, and XII were identified to have potent activity with single-digit to submicromolar IC50 values in the enzymatic assay. The mechanism of action of the hits was further characterized using enzyme kinetic studies, thermal shift binding assays, and native mass spectrometry. Significantly, four compounds (boceprevir, GC-376, calpain inhibitors II and XII) inhibit SARS-CoV-2 viral replication in cell culture with EC50 values ranging from 0.49 to 3.37 ?M. Notably, boceprevir, calpain inhibitors II and XII represent novel chemotypes that are distinct from known Mpro inhibitors. A complex crystal structure of SARS-CoV-2 Mpro with GC-376, determined at 2.15 Å resolution with three monomers per asymmetric unit, revealed two unique binding configurations, shedding light on the molecular interactions and protein conformational flexibility underlying substrate and inhibitor binding by Mpro. Overall, the compounds identified herein provide promising starting points for the further development of SARS-CoV-2 therapeutics.

SUBMITTER: Ma C 

PROVIDER: S-EPMC7263507 | biostudies-literature | 2020 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease.

Ma Chunlong C   Sacco Michael D MD   Hurst Brett B   Townsend Julia A JA   Hu Yanmei Y   Szeto Tommy T   Zhang Xiujun X   Tarbet Bart B   Marty Michael T MT   Chen Yu Y   Wang Jun J  

bioRxiv : the preprint server for biology 20200106


A novel coronavirus SARS-CoV-2, also called novel coronavirus 2019 (nCoV-19), started to circulate among humans around December 2019, and it is now widespread as a global pandemic. The disease caused by SARS-CoV-2 virus is called COVID-19, which is highly contagious and has an overall mortality rate of 6.96% as of May 4, 2020. There is no vaccine or antiviral available for SARS-CoV-2. In this study, we report our discovery of inhibitors targeting the SARS-CoV-2 main protease (M<sup>pro</sup>). U  ...[more]

Similar Datasets

| S-EPMC7294525 | biostudies-literature
| S-EPMC7944397 | biostudies-literature
| S-EPMC7605558 | biostudies-literature
| S-EPMC8204911 | biostudies-literature
| S-EPMC7474075 | biostudies-literature
| S-EPMC9143577 | biostudies-literature
| S-EPMC10470319 | biostudies-literature
| S-EPMC9264725 | biostudies-literature
| S-EPMC4999588 | biostudies-literature
| S-EPMC10928718 | biostudies-literature